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 Underwater object detection is critical for environmental monitoring, 
maritime security, and rescue operations, yet it faces challenges such as light 
scattering, color distortion, and low visibility. This paper presents a 
comprehensive review of YOLO (You Only Look Once) algorithms and their 
integration with attention mechanisms to address these challenges. We 
systematically analyze the evolution of YOLO models—from YOLOv1 to 
YOLOv11—highlighting key architectural advancements, including anchor-
free detection, multi-scale feature fusion, and attention modules like CBAM 
and SimAM. These innovations enhance detection accuracy in underwater 
environments, where small, occluded objects and dynamic backgrounds 
degrade performance. 

We evaluate YOLO variants on underwater datasets (e.g., URPC, SUIM, 
RUIE), comparing metrics such as mean Average Precision (mAP), inference 
speed (FPS), and computational complexity. Attention mechanisms, including 
spatial, channel, and self-attention, are shown to improve feature 
discrimination, achieving up to a 25% reduction in false positives. Challenges 
such as limited annotated data and real-time processing constraints are 
discussed, along with solutions like semi-supervised learning and synthetic 
data augmentation. 

Based on our findings, YOLOv8 and YOLOv9 models integrating attention 
mechanisms provide the best trade-offs between accuracy and efficiency for 
underwater detection. These suggest other directions for future research such 
as novel lightweight attention designs and multi-sensor fusion to give even 
more robustness in complex aquatic environments. This study provides a 
useful reference for researchers and practitioners who contribute to the 
development of underwater object detection techniques. 
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1. INTRODUCTION 

        Underwater object detection is a critical field with growing significance in applications such as 
environmental monitoring, maritime security, and rescue operations. This technology is essential for monitoring 
environmental changes, including water pollution and the degradation of marine habitats. It also plays a crucial 
role in maritime security by detecting risks like shipwrecks and underwater mines[1] The primary obstacles stem 
from inherent optical properties of water, including light scattering and absorption, which lead to low contrast, 
color distortion, and reduced visibility. The presence of suspended particles further complicates object recognition 
[2, 3]. 

To address these challenges, deep learning techniques have emerged as a state-of-the-art solution. Among 
these, one-stage detectors like the YOLO framework have proven to be particularly effective, offering a powerful 
balance of real-time speed and high accuracy suitable for the dynamic nature of underwater scenes [4, 5]. 
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Objective of the Study 
The primary objective of this study is to provide a comprehensive and systematic review of the YOLO 
framework's application to underwater object detection. This research aims to: 
1. Systematically Document the Evolution of YOLO: To analyze the key architectural and 

methodological advancements from YOLOv1 to its latest versions, focusing on features relevant to 
underwater challenges (e.g., multi-scale fusion, anchor-free design). 

2. Evaluate the Role of Attention Mechanisms: To investigate and synthesize literature on how 
integrating attention mechanisms (e.g., CBAM, self-attention) with YOLO models enhances feature 
discrimination for detecting small or occluded underwater targets. 

3. Analyze and Compare Model Performance on Underwater Datasets: To review and compare the 
reported performance of various YOLO models on established underwater datasets, using standard 
metrics such as mAP and FPS. 

4. Identify Key Challenges and Future Research Directions: To consolidate the primary challenges that 
remain in this specific field and identify promising pathways for future research, such as lightweight 
model design and multi-sensor fusion. 

This review is structured to guide the reader from foundational concepts to specific analyses and future outlooks. 
It begins with a comprehensive review of related literature, followed by a detailed examination of the YOLO 
framework's architectural and methodological progression. 
The paper then contextualizes this evolution by analyzing the specific challenges that YOLO faces in underwater 
environments. Building on this, it evaluates the role of attention mechanisms as a key technological solution. To 
support the analysis, the review provides an overview of relevant underwater datasets and a comparative 
performance evaluation of various YOLO models. 
Finally, the paper consolidates its findings to identify key challenges and propose promising future research 
directions, thereby addressing all of the study's primary objectives. 
 
2. Related work 
       Research in underwater object detection has been approached from two primary angles: the development of 
novel technical solutions for specific challenges, and comprehensive reviews that survey the field. Before delving 
into specific contemporary studies, it is useful to contextualize the technological evolution of object detection 
methodologies. This progression from traditional, feature-based methods to modern deep learning paradigms 
highlights the critical trade-offs between accuracy, speed, and robustness in the challenging underwater 
environment. 
        To appreciate why one-stage deep learning detectors like YOLO have become the dominant paradigm, it is 
essential to compare their capabilities against other computational approaches[6], as summarized in Table 1. 
 

Table 1: Comparison of Different Object Detection Paradigms for Underwater Environments 

Methodology Key Principle Strengths Weaknesses in Underwater Context 

Traditional 
Computer 

Vision 

Rule-based image 
processing using hand-
crafted features (e.g., 
color thresholds, edge 

detection). 

Fast; requires no training 
data. 

Extremely Brittle: Fails completely with 
changes in lighting, turbidity, and color 

distortion. Cannot generalize across 
different underwater scenes. 

Classic Machine 
Learning (ANN, 

SVM) 

Learns decision 
boundaries from hand-
crafted features (e.g., 

HOG, SIFT) which are 
then fed into a classifier 

like an ANN. 

More adaptable than rule-
based methods. 

Feature-Dependent: Performance is 
entirely limited by the quality of the hand-

crafted features, which are not robust to 
severe underwater image degradation. 

ANNs on their own are not well-suited for 
complex spatial detection tasks from raw 

pixels. 

Deep Learning 
(Two-Stage 
Detectors) 

e.g., R-CNN, 
Faster R-CNN 

Region Proposal + 
Classification. Proposes 
potential object regions 
first, then classifies each 

one. 

Highest Accuracy (mAP): 
Excellent at precise 

localization and 
classification. 

Slow and Computationally Heavy: The 
multi-stage pipeline makes them unsuitable 

for real-time detection on resource-
constrained platforms like AUVs. 

Deep Learning 
(One-Stage 

Unified End-to-End 
Regression. Predicts 

Excellent Speed-Accuracy 
Trade-off: Achieves real-

Historically struggled with very small 
objects, though recent versions (YOLOv5 



     r          ISSN: 2791-2868 

IJICI, Vol. 4, No. 2, December 2025: 114~123 

116 

Methodology Key Principle Strengths Weaknesses in Underwater Context 

Detectors) 
e.g., YOLO, 

SSD 

bounding boxes and class 
probabilities in a single 

pass. 

time performance (high 
FPS) while maintaining 

very competitive accuracy. 

and later) have significantly improved in 
this area. 

As the table illustrates, traditional and classic machine learning methods are ill-suited for the dynamic nature of 
underwater environments. Deep learning overcomes this by learning robust features directly from data. Within 
this paradigm, one-stage detectors like YOLO provide the most effective solution by balancing the need for high-
speed processing for real-time monitoring with the high accuracy required for reliable detection. 
This evolution provides the context for evaluating recent literature. For instance, some technical solutions still 
employ multi-stage pipelines, as seen in the work of Rajendran et al. [7], who proposed a pipeline involving 
sequential pre-processing, segmentation, DWT feature extraction, and CNN classification1. While reporting high 
accuracy2, this approach does not leverage a dedicated end-to-end framework like YOLO, nor does it use standard 
object detection benchmarks (mAP, FPS), making it difficult to compare against contemporary methods. 
On the other hand, several comprehensive reviews have sought to map the research landscape. The works by Er 
et al[8], Jian et al. [9], and Khan et al.[10] provide valuable overviews of the field. However, due to their broad 
scope, they tend to treat the YOLO framework as a general sub-category without a deep, version-by-version 
analysis of its architectural lineage for underwater tasks, and they lack quantitative, controlled performance 
benchmarks. 
Even reviews focused specifically on the YOLO family, such as the comprehensive work by Terven et al. [11], 
are limited by their focus on general-purpose computer vision. That review does not analyze how YOLO's 
innovations address unique underwater challenges and contains no performance analysis on underwater datasets. 
Beyond broad surveys, specific technical papers demonstrate the practical application of the concepts central to 
our review. For example, the work by Zhang et al.[12] directly addresses the need for efficient underwater 
detection by proposing a lightweight model based on YOLOv4. They replaced the standard backbone with 
MobileNetv2 and integrated a modified attentional feature fusion module (AFFM) to enhance the feature pyramid. 
This approach achieved a high mAP of 92.65% on the brackish dataset while reducing the model size to just 
19.53% of the original YOLOv4, demonstrating a successful trade-off between accuracy and efficiency.The 
second path is input enhancement through pre-processing. A very recent example by  Roy & Talukder [13] 
demonstrates this by applying a MaxRGB filter to images before feeding them to a standard YOLOv8n model, 
achieving an impressive 98.6% mAP₅₀ on The Brackish Dataset. 
 
Therefore, a comprehensive survey of the literature reveals a clear and specific research gap. While general-
purpose reviews map the field broadly, and individual technical papers like those of Zhang et al. [12]and Roy & 
Talukder [13]provide excellent specific solutions, a systematic review that synthesizes and compares these 
advanced, specialized models is missing. This paper is motivated by the need to provide a systematic analysis of 
the YOLO framework's evolution specifically for the underwater domain, to offer a focused synthesis on the 
integration of attention mechanisms with YOLO for this niche, and, most critically, to present a comparative 
performance analysis on relevant underwater datasets—a contribution currently absents from the literature. 
 
3. The Yolo principle 
    The YOLO framework marks a fundamental shift in object detection by reformulating the task as a single, end-
to-end regression problem. In contrast to multi-stage methods, YOLO's core principle is to make predictions based 
on a global view of the input image. As visualized in Figure 1, this is achieved by dividing the image into an S×S 
grid, where each grid cell is responsible for detecting any object whose center falls within its boundaries[14] .  

 
 

Figure 1: Principle of yolo algorithm[15] 

For each grid cell, the model simultaneously predicts two distinct sets of information: a predetermined number of 
bounding boxes and a vector of conditional class probabilities. Each bounding box is parameterized by five values: 
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its center coordinates (x, y), its dimensions (width w and height h), and a confidence score. This score represents 
both the model's determination that a box contains an object and the accuracy of its fitness[16]. This process is 
formalized into step-by-step algorithm 1. 
 

Algorithm 1: The Foundational YOLO Framework [17] 
Input: 

• I_square: A preprocessed input image of fixed square size S×S. 
• Ground Truth: True bound boxes and classes (during training). 
• Thresholds: Confidence and NMS thresholds. 

Output: 
• Final Detections: A set of refined bounding boxes with class labels and scores. 
• Trained Model Weights (during training). 

Steps: 
1. Grid Partitioning: Divide the input image I_square into an S x S grid. 
2. Unified Prediction: For each grid cell, pass the image through the network once to predict: 

o A set of B bounding boxes (BBox_pred). 
o A vector of class probabilities (P_pred). 

3. Post-Processing: a. Generate final confidence scores for each box by combining BBox_pred 
confidence with P_pred. b. Apply Non-Maximum Suppression (NMS) using the defined 
thresholds to filter and refine Final Detections. 

4. Model Learning (During Training Only): a. Calculate the Total Loss between Predictions 
and Ground Truth. b. Update model weights via backpropagation based on Total Loss. 

 

 
This algorithm details the pipeline from initial image processing to the final application, which eliminates 
redundant detections and utilizes Non-Maximum Suppression (NMS). It is this “single shot” processing that, 
within the one unified architecture, allows the YOLO framework to have its characteristic speed of real-time 
detection[18]. 

  3.1 The Evolution of YOLO Models 
      The evolution of the YOLO framework has significantly transformed real-time object detection, with 
each iteration introducing key architectural and methodological enhancements to improve the trade-off 
between speed and accuracy. This progression reflects a continuous effort to address the limitations of 
previous versions and adapt to new challenges in computer vision. 
• YOLOv1 and YOLOv2: Foundational Concepts and Early Refinements The original YOLOv1 pioneered 

real-time detection by framing the task as a single regression problem. While revolutionary for its speed, 
it struggled with significant localization errors and had difficulty detecting small or clustered objects due 
to its coarse grid structure. To address these shortcomings[10], YOLOv2 introduced crucial 
improvements such as Batch Normalization for more stable training and anchor boxes to achieve more 
precise localization. Furthermore, its variant YOLO9000 extended detection capabilities to over 9000 
categories through hierarchical classification[16]. 

• YOLOv3 and YOLOv4: Multi-Scale Detection and Optimization A major leap came with YOLOv3, 
which substantially improved the detection of small objects by incorporating a more powerful residual 
backbone (Darknet-53) and introducing predictions at three different scales[4]. Subsequently, YOLOv4 
focused on optimizing the training process and architecture without a significant increase in 
computational cost. It integrated a "bag-of-freebies" for training (e.g., mosaic augmentation, CIoU loss) 
and a "bag-of-specials" for the architecture itself (e.g., SPP module), achieving a state-of-the-art balance 
between speed and accuracy at the time[19]. 

• YOLOv5, YOLOv6, and YOLOv7: Usability and Industrial Advancements The development of 
YOLOv5 marked a significant shift by moving the framework to the more accessible PyTorch library, 
which greatly improved its usability and deployment flexibility. It also introduced enhancements like 
automated anchor box optimization and a computationally efficient SPPF layer[20, 21]. Following this, 
YOLOv6 and YOLOv7 continued the trend of optimization for industrial applications. YOLOv6 
introduced an efficient anchor-free design and a reparametrized backbone[22], while YOLOv7 further 



     r          ISSN: 2791-2868 

IJICI, Vol. 4, No. 2, December 2025: 114~123 

118 

pushed efficiency with E-ELAN networks and advanced model scaling techniques, achieving exceptional 
real-time performance[23]. 

• YOLOv8 and Beyond: The Modern Anchor-Free Era Finally, YOLOv8, the baseline model for this 
research, represents a culmination of these advancements. It features a completely anchor-free design 
and a decoupled head, which simplifies the detection pipeline and resolves the conflict between 
classification and regression tasks[24]. Furthermore, it incorporates a redesigned C2f module for richer 
feature extraction and advanced loss functions like Distribution Focal Loss (DFL) to enhance localization 
accuracy[25]. Subsequent versions like YOLOv9 and YOLOv10 have continued to innovate by focusing 
on optimal gradient flow and lightweight architecture[26]. 

4.   Challenges in Underwater Object Detection 
       The underwater environment introduces unique challenges that degrade the performance of conventional 
computer vision models. The three primary obstacles are:  (1) Image quality degradation caused by light 
absorption, scattering, and color distortion [27]; (2) Detection challenges including small objects, occlusion, and 
dynamic backgrounds[28];  and (3) A severe lack of annotated data [29]. 

4.1  Image quality degradation  
       Underwater images suffer from severe degradation due to three primary physical phenomena: light 

attenuation, scattering, and color distortion. Light attenuation causes exponential visibility reduction with depth, 
particularly affecting red wavelengths (absorption coefficient of ~0.3 m⁻¹ vs. 0.01 m⁻¹ for blue in clear water) 
[30]. Scattering from suspended particles creates backscattering effects that reduce contrast by up to 80% in turbid 
waters [31], while wavelength-dependent absorption creates strong blue-green color casts that distort object 
appearances [32]. To address these challenges, researchers have developed two complementary approaches: 
physical model-based enhancement and data-driven methods. Physics-based techniques like histogram 
equalization [33] can recover up to 60% of lost contrast in shallow waters, while deep learning approaches 
[34]achieve PSNR improvements of 5-8 dB by learning degradation patterns. For training data augmentation, 
GAN-based synthetic datasets [35]have demonstrated 15-20% mAP improvement on detection tasks by 
generating physically accurate underwater variations. These solutions collectively address the fundamental optical 
challenges that degrade underwater imaging systems. 

4.2 YOLO-Specific Challenges in the Underwater Environment and Their Technical Solutions 

YOLO algorithms face unique challenges when applied to underwater environments, as the harsh visual 
conditions not only degrade image quality but also directly impact the model’s architectural components, thus 
hindering its effectiveness. The most prominent of these challenges are the loss of small object features and the 
network's weakened ability to discriminate features due to image degradation. 
A primary challenge is the loss of features for small or occluded objects. YOLO's hierarchical architecture, which 
uses successive down-sampling layers, can cause the spatial information from objects smaller than 50 pixels to be 
completely lost as features pass through the network's backbone and neck [36].To address this, technical solutions 
focus on modifying the network's structure. These include enhancing multi-scale architectures like Feature 
Pyramid Networks (FPN) and Path Aggregation Networks (PANet) to improve the flow of fine-grained details, 
which has shown to improve mean Average Precision (mAP) by 12-18% in some modified YOLOv5 
implementations. Another solution is to add extra detection heads at earlier, higher-resolution stages to specialize 
in detecting small targets[37]. 

A second challenge is weakened feature discrimination due to poor image quality. Low contrast, color cast[37], 
and dynamic backgrounds can make visual patterns ambiguous for YOLO’s convolutional filters[38], resulting in 
weak feature maps and a higher rate of false positives. Researchers address this through two main strategies: 

1. Pre-processing Enhancement: This approach improves image quality before it enters the YOLO model. For 
instance, a recent study applied a MaxRGB filter to underwater images, enabling a YOLOv8n model to achieve 
a high detection accuracy of 98.6% mAP₅₀ [13]. 
2. Integrating Attention Mechanisms: This method modifies the YOLO architecture internally. Attention 
modules adaptively learn to amplify features relevant to the target while suppressing noise and background 
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elements. The work by Zhang et al. is a key example, where integrating a modified attentional feature fusion 
module (AFFM) into the YOLOv4 architecture improved performance in underwater environments [12]. 
 
While these advancements show significant potential for applications in marine archaeology and ecological 
monitoring, challenges remain in achieving consistent performance across diverse underwater environments. 

4.3   A severe lack of annotated data 
        The scarcity of annotated underwater datasets, due to high annotation costs and limited public 
availability[39], hinders robust object detection model development. While datasets like URPC, SUIM, Seaclear, 
and FishTrack23[40] [41] [42] provide some training data, their scope remains restricted. Semi-supervised 
learning [40]and transfer learning [39]offer promising solutions by leveraging unlabeled data and pretrained 
terrestrial models. However, underwater-specific challenges—such as visibility variations and occlusion—still 
limit performance. Further research is needed to improve dataset availability and algorithmic adaptability. 

5.   Attention Mechanisms in Underwater Object Detection 
      Attention mechanisms are computational techniques that enable neural networks to dynamically focus on the 
most relevant features of input data, thereby improving model performance [43]. In underwater object detection, 
where challenges such as low visibility, light scattering, and occlusions are prevalent, attention mechanisms 
enhance feature discrimination by suppressing noise and emphasizing critical regions [44]. By adaptively 
weighting feature maps, these mechanisms improve detection accuracy in complex underwater environments[45]. 

5.1 Types of Attention Mechanisms 
1. Self-Attention (Intra-Attention): 

Self-attention computes relationships between all positions in a feature map, allowing the model to 
capture long-range dependencies [43]. In underwater object detection, it helps in identifying distant or 
partially obscured objects by modeling contextual interactions [46]. 

2. Channel Attention: 
Channel attention mechanisms, such as Squeeze-and-Excitation (SE) networks [47], recalibrate 
channel-wise feature responses by learning adaptive weights. This is particularly useful in underwater 
scenarios where certain spectral channels may be more informative due to varying light absorption[48]. 

3. Spatial Attention: 
Spatial attention focuses on salient regions within feature maps, enhancing object localization[49]. In 
underwater imaging, where objects may be partially occluded or blurred, spatial attention helps in 
precisely detecting object boundaries [50]. 

These mechanisms are often integrated into convolutional neural networks (CNNs) or transformers to optimize 
underwater object detection, addressing challenges such as low contrast and background clutter [50]. 

5.2  Attention  Mechanisms Integrated into various YOLO architectures 
       Attention mechanisms have been effectively integrated into various YOLO architectures to enhance object 
detection performance across diverse applications. In YOLOv5, the incorporation of Convolutional Block 
Attention Module (CBAM), Squeeze-and-Excitation (SE), and Channel Attention (CA) improved weapon 
detection accuracy, achieving a 95.6% mean Average Precision (mAP)—a 3.1% increase over the baseline[51]. 
Similarly, YOLOv7 combined attention mechanisms with recursive gated convolutions, maintaining high speed 
while improving detection accuracy for autonomous driving scenarios[52]. YOLOv8 further advanced small 
object detection in UAV imagery using spatial and channel attention, reaching a 50.2% mAP[53]. For license 
plate recognition, YOLO-SLD integrated into the SimAM attention module, boosting accuracy from 98.44% to 
98.91% without altering the base architecture[54]. Additionally, YOLOv4's cascade attention mechanism, fusing 
channel and spatial features, increased mAP by 4.77% for small object detection[55]. While these enhancements 
demonstrate significant accuracy improvements, they also introduce computational trade-offs, requiring careful 
optimization for real-time applications. Future research may focus on lightweight attention designs to further 
balance speed and performance in next-generation YOLO models. 
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6.  Datasets for Underwater Object Detection 
The datasets utilized for underwater ecological monitoring and robotics present unique applications and 
challenges. Each dataset serves a specific purpose, from tracking marine life to identifying debris, while also 
facing environmental difficulties that impact data quality and analysis. Below is a summary of the datasets, their 
uses, and their associated challenges. 

Underwater object detection relies on several specialized datasets shown in Table 2, each designed to address 
specific challenges in aquatic environments. The Brackish Dataset is primarily used for detecting fish, crabs, and 
debris in brackish water, supporting ecological monitoring and robotics applications, though it faces challenges 
such as low contrast, turbidity, and regional bias, particularly in Northern Europe[56]. Similarly, the URPC 
Dataset focuses on tracking sea cucumbers and scallops in aquaculture settings but struggles with class imbalance 
and variability in deep-sea environments. The SUIM Dataset, which segments divers and reefs in coral 
environments, encounters difficulties with dynamic lighting conditions and occlusions that hinder visibility[57]. 
For salvage operations, the DUO Dataset identifies underwater mines and debris, though sparse annotations in 
murky water complicate detection efforts. The RUIE Dataset enhances low-visibility images before detection 
tasks; however, it is affected by color distortion and light scattering, which degrade image quality. Lastly, the 
HabCam Dataset maps marine habitats and species distributions, though challenges such as environmental 
variability and data integration issues are often encountered[56]. While these datasets are indispensable for 
advancing underwater monitoring technologies, they underscore the need for improved methodologies to 
overcome the inherent difficulties posed by underwater environments, including poor visibility, limited annotated 
data, and real-time processing constraints. Addressing these challenges will require innovations in synthetic data 
generation, multi-sensor fusion, and lightweight model development to enhance detection accuracy and 
operational efficiency. 

Table 2: Underwater Object Detection Datasets 

Dataset Environment Key Objects 
Primary Use 
Cases 

Main 
Challenges 

Reference 

Brackish 
Brackish 
water 

Fish, crabs, 
debris 

Ecological 
monitoring, 
underwater 
robotics 

Low contrast, 
turbidity, 
regional bias 

[56] 

URPC Deep sea 
Sea 
cucumbers, 
scallops 

Aquaculture, 
underwater 
robotics 

Class 
imbalance, 
deep-sea 
variability 

[58] 

SUIM Coral reefs 
Divers, 
wrecks, reefs 

Marine 
research, 
diver safety 

Dynamic 
lighting, 
occlusions 

[57] 

DUO Murky water Mines, debris 
Military, 
salvage 
operations 

Sparse 
annotations, 
low visibility 

[59] 

RUIE 
Low-visibility 
water 

Enhanced 
images (pre-
processing) 

Image 
enhancement 
for detection 
tasks 

Color 
distortion, 
light 
scattering 

[32] 

 

7.  Comparison of YOLO Versions on Underwater Datasets 
     The comparison of YOLO versions in underwater object detection reveals significant advancements in 
performance across different iterations. Recent studies indicate that while YOLOv5 generally excels in mean 
Average Precision (mAP), newer versions like YOLOv8 and YOLOv7 also demonstrate notable improvements 
in accuracy and speed, making them suitable for challenging underwater environments, as shown in Table 3. 
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Performance Metrics 

• YOLOv5: Achieved the highest mAP score in underwater conditions, showcasing superior precision and 
recall compared to its predecessors[60]. 

• YOLOv7: While slightly slower, it outperformed YOLOv5 and YOLOv3 in detection accuracy, with an 
mAP of 0.82[61]. 

• YOLOv8: Demonstrated high accuracy (mAP of 0.84) and rapid detection capabilities, making it 
effective for real-time applications[62]. 

Table 3. Comparison of YOLO versions in underwater object detection 

Version mAP 
Speed 
(FPS) 

FLOPs (G) Key Strengths 
Limitations & 

Challenges 

YOLOv5 
[60] 

0.82 60-85 16.5 

Best balance of 
accuracy/speed; 

superior 
precision/recall in 

turbid water 

Struggles with 
extreme 

occlusion 

YOLOv7 
[61] 

0.82 50-70 104.7 

Higher accuracy 
than v5/v3; 

robust to shape 
distortions 

Computationa
lly heavy 

(high FLOPs) 

YOLOv8 
[62] 

0.84 90-140 28.6 

Anchor-free 
design; fastest 

real-time 
performance; 
handles light 

variations 

Smaller object 
detection 

needs 
refinement 

 
8.  Future Work 
     To advance underwater object detection, future research should prioritize: 

1. Enhancing Data Quality – Generative Adversarial Networks (GANs) can synthesize realistic underwater 
imagery to address dataset limitations, improving model generalization. 

2. Optimizing Lightweight Models – Developing efficient YOLO variants for deployment on low-power 
edge devices (e.g., AUVs, ROVs) without sacrificing accuracy. 

3. Boosting Small/Object Detection – Refining multi-scale attention mechanisms and high-resolution 
feature fusion to better identify occluded or minute marine objects. 

 
Conclusion 
   This review highlights YOLO’s transformative role in underwater object detection, driven by architectural 
innovations like attention mechanisms and anchor-free designs. Despite progress, challenges persist—particularly 
data scarcity and small-object detection in turbid environments. Future efforts must focus on data 
augmentation, computational efficiency, and adaptive detection frameworks to unlock robust, real-time 
underwater vision systems. Collaborative advancements in AI and marine technology will be pivotal in 
overcoming these barriers. 
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