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 Wireless sensor networks (WSNs) are crucial in domains such as 
environmental monitoring, smart farming, and healthcare. These sensor node 
networks, which are dispersed over large regions, collect and transmit data 
to enable real-time decision-making. Contrarily, WSNs face significant 
security challenges, particularly from hostile nodes that can compromise 
data, obstruct communication, or steal confidential information. Malicious 
nodes significantly impact the reliability and efficiency of wireless sensor 
networks (WSNs). Addressing this challenge requires developing a method 
that accurately identifies trusted and vulnerable nodes. In this study, a new 
machine learning-based method is proposed to classify nodes within sensor 
networks by analyzing their characteristics such as energy consumption, 
communication behavior, and others. Machine learning algorithms can 
effectively detect malicious nodes. Metrics, including precision, recall, and 
F1 score, are used to evaluate the performance of models. Three prominent 
algorithms Random Forest (RF), K-Nearest Neighbors (KNN), and Support 
Vector Machine (SVM) are compared. Experimental results indicate that the 
RF algorithm achieves superior results due to its robustness and reliability in 
detecting malicious node behavior, while also enhancing the security and 
energy efficiency of WSNs. 
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1. INTRODUCTION  

Wireless Sensor Networks (WSNs) it is are being used in many places now days such like farms and 
hospital and in military also even in environment things because they are good in collect data automatically 
and they are very helpful for people who need fast decisions to make. The sensors are be putting in many 
locations different from each other and them sends the dates to one place where the processing it is happen. 
But because they depend too much on wireless connect and they are many times in places that is remote or 
not stable very much, so they are get affected with many kinds of threats that is making the system not work 
good [1]. Because the WSNs they not strong devices and have small resource and little energy and the system 
not allow to use security methods normal such as encryption or pass wording because it takes too much 
compute and battery, and then it makes system slow and not useful. That why machine learnings becoming 
important to solve these kinds of problems, it looking on nodes and see if them use too much power or send 
too much and if something strange happening then maybe it is bad node and this technique helping so much 
to find it [1]. 

Other peoples in research they also trying different way like using model of infection in biology like 
SI model where people get sick and infect other one and now, they say maybe same happen in networks 
when malwares come in and spreading from node to other nodes and then network become all corrupted. But 
those models have big problem because them don't include things that is important like Media Access 
Control( MAC )protocol or moving nodes and power low or many attacks same time for example botnets that 
make chaos in network, so model is not reliable too much in real life [2]. 
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In this research paper what authors they try to do is they use machine learning model name is HGB 
which is like one of advanced model that it can check nodes how they behavior and what kind of 
communication they doing and by this way it can know if node is bad or not and if it is bad then we can 
remove it from the system for protecting other nodes. Also, they use IPFS which is another system that 
makes the data safer because it is splitting it into pieces and hashing it and put it in many places and this also 
help for making security better and make sure that the bad node not change or steal the data [3]. 

And the traditional method that called Proof of Work (PoW) was be used before but it not give good 
performance and need very much power and time and this is not suitable for WSN because they have low 
ability, and now there is new thing called Verifiable Byzantine Fault Tolerance(VBFT) that is much better 
because it use voting system and it do consensus faster and without using too much resource. In the testing 
what done using WSN-DS dataset they find that HGB model was better than other model like AdaBoost and 
Gradient Boost and Ridge and Linear Discriminant Analysis ( LDA  ) and it gave good results in different 
metrics such like precision and accuracy and F1 and also recall. The different was like from 2% until 16% 
better in some time which is showing how good HGB working [4]. 

And also, the VBFT showed that it is better than PoW in not only speed but also in storing data and 
making sure system not losing it or get hacked. It gave 20 to 30% better result in those things which is good 
evidence that this combination of Machine Learning( ML  ) and consensus make network safer and more 
reliable and less chance for breaking down [5]. And it’s important too because rogue nodes when they are in 
system, they make many troubles like stop the communication and use all battery and make data wrong or 
delete it or break whole system in some cases and we must stop it. 

Also, many ways to find those nodes before were simple ones that is based on rules like if 
something happen then do this, but they are not changing or learning and so not good if attack is new one. 
But ML model like SVM and RF and KNN they are can learning and adapting to attack that didn’t happen 
before because they see the pattern in network and detect what is strange [6]. 

Some people also saying that if we watch network carefully and look at energy used and how many 
time node sends and if it sends weird or too much or maybe not at all, then it maybe means that the node is 
not good. So, combining rule system with ML system can be working very effective because ML is smart and 
rule is fast and together, they can make network more protected. 

WSNs is used in many places where failure is dangerous like hospital or military and even small 
problem can be big damage if data is changed or wrong or missing. That’s why it is very important to have 
good system to detect rogue nodes before something bad happen. And that is what this research doing. It 
tested 3 algorithms, RF and SVM and KNN and found that Random Forest is better one. In paper they divide 
into parts that is intro and related works and data collection and testing and results and the last one is 
conclusion that saying machine learning is good solution for WSN to make it safer and better to use. 

 
2. RELATED WORK 

The nodes in WSNs don't have much energy, like they are small and can't last long. If we don’t do 
saving energy, they will stop working very fast. Also, the places where these nodes go are not always good, 
especially in army areas or far away, which make it hard. The nodes can break easy too, so they not strong at 
all. That’s why hackers can take them over [7]. 

So, people tried ideas to fix it. One way is to put nodes in groups by clustering. That make the 
groups work better and save power more. Then network works better and live more longer. A new thing is 
called ESMCH, it means something like secure hybrid detection system. This adds one moving node that 
goes around and helps in finding attacks like when attacker watching secretly or dropping data in black hole. 
The ESMCH was tested and it made things better like security and energy [7]. 

Other things were added to WSN like IoT so nodes can talk better. In [8], they use method to make 
data smaller and used models like HMM and GMM, which choose the good things to train on. Their model 
got 92.18% accuracy on special dataset with attacks and normal data. Also, there’s ICRPFDM, which use 
WSN with IoT and special routing protocol. This method make routing better. Even if the direct route is 
slow, IoT makes it faster and channel more stable [9]. 

Collecting data in WSN is hard because nodes are small and can't do a lot. They also can't keep big 
data. If bad nodes are inside, they can change the data and make everything wrong. So, the data collecting get 
worse. To fix this, they made SDAP. It helps by putting nodes in tree shape and choosing some nodes to mix 
the data from others. This is safer and faster. It also makes data move better and more secure. So, it is good 
option for places where fast and secure is needed [10]. 

Other researchers did another method using fuzzy logic, like ANFIS. It watches the node behavior 
and sees if it’s bad or not by some trust score. It is good especially in mobile networks like MANET. Bad 
nodes here make big problems like using energy and breaking connection. The study showed that their 
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method is better than other ones like OEERP or LEACH or BCDCP. It gave good results in delivery and less 
energy used [11]. 

There is also TRS&EP, which looks at bad nodes who do bad things like not sending or changing 
messages. This method mixes machine learning and check things like energy and who is nearby. Then it uses 
a function with Gaussian name to guess who is good and who is not. It finds bad ones early and removes 
them so network stay fine and not crash [12]. 

In another study [13], they used reinforcement learning to copy the bad attacks like when nodes 
don’t send things right. Then they bring new idea called DT-DPC which find weird nodes using voting and 
cluster stuff. Even if attacker is smart, DT-DPC still can catch them. They tested it and saw 4% better 
performance and only 1% false result and 10% missing detection, which is low. 

In the paper [14], a malicious node detection strategy called FTM-ABC is proposed, which 
combines a fuzzy trust model (FTM) with the artificial bee colony (ABC) algorithm. The FTM calculates 
indirect trust, and the ABC algorithm optimizes this model to detect dishonest recommendation attacks. The 
fitness function, which includes recommended deviation and interaction index deviation, enhances the 
effectiveness of detection. Simulation results show that FTM-ABC maintains a high detection rate and low 
false-positive rate, even when up to 50% of nodes are dishonest.  In the paper [15], the authors propose a 
malicious node identification strategy for WSNs based on a Time Reputation Model and Environmental 
Parameters Optimization (TRM-EPO). The approach calculates a comprehensive reputation that combines 
direct and indirect (recommended) reputations. It also constructs an environmental parameters matrix that 
considers factors such as node energy, data volume, number of adjacent nodes, and node sparsity. The 
strategy predicts the next cycle's trust based on this matrix and the comprehensive reputation data. The 
similarity between actual reputation and predicted trust is then compared with an adaptive threshold to 
identify malicious nodes. Experimental results show that TRM-EPO enhances the security and reliability of 
sensor nodes in complex environments, outperforming comparison algorithms. In the paper [16], a novel 
method for detecting malicious nodes is proposed, based on an online learning algorithm. The process begins 
by calculating the credibility of each path in the network using collected packets. The online instruction 
algorithm is then used to model the path reputation, and each node's dependability in the IoT environment is 
assessed. A clustering algorithm is used to identify malicious nodes. To enhance the model's performance in 
small-scale networks and produce a more successful detection strategy, the network's structure will be 
processed using the generic online learning detection technique. According to experimental results, the 
proposed method exhibits high stability and performance and reliably detects malicious nodes. 

 
3. IMPORTANCE OF DETECTING MALICIOUS WSNS 

WSNs are everywhere now. You’ll find them in smart farms checking on plants, in hospitals helping 
monitor patients, and even in forests to track weather or pollution. These networks are made of tiny sensors 
that collect information like temperature, humidity, or light levels and send it to a central place. That central 
system takes all the data and helps make smart decisions. It sounds great, right? But there’s a problem not all 
parts of the network are safe. 

Sometimes, there are bad nodes and small devices in the network that are controlled by hackers or 
attackers. These devices look like normal sensors, but they’re not. They’re on the network to cause problems, 
and they can do a lot of different things to mess everything up. 

a. Messing with the Data 
A bad node can change the data that it sends or receives. So, if the real temperature is 25°C, the bad 

node might say it’s 45°C. That can cause big problems, especially in systems where decisions are based on 
that data. For example, in a smart greenhouse, it could make the system think the crops are overheating and 
turn on the cooling system for no reason. That wastes energy and money. 

b.  Breaking the Routes 
In WSNs, data moves from one sensor to another until it reaches the main station. But if there’s a 

malicious node, it might stop the data from going through or send it in the wrong direction. That means the 
data might never reach its destination. It’s like trying to deliver a letter, but someone in the middle keeps 
throwing it away. 

c.  Flooding the Network (DoS Attacks) 
Some bad nodes just send too much data—more than the network can handle. This is called a Denial 

of Service (DoS) attack. It overloads the system, making it slow or even causing it to shut down. And since 
these sensors often run on batteries, all that extra work uses up energy really fast. 

d.  Stealing Data 
WSNs often carry sensitive information. In healthcare, for example, they might carry patient heart 

rates or other personal data. A malicious node can read that information and send it to someone else without 
permission. It’s like spying from the inside. 
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e.  Pretending to Be a Trusted Node 
Some malicious nodes are sneaky. They pretend to be normal, trusted parts of the network. They act 

helpfully and follow the rules—at first. But once they gain trust, they start causing problems. This is called 
an impersonation attack, and it’s hard to detect because everything looks fine on the surface. 

f. Teamwork Between Bad Nodes (DDoS) 
Sometimes it's not just one bad node but many of them are all bad together. This is called DDoS 

which is a big attack. They all send lots and lots of fake messages to the network and it can’t take it and then 
it stops working and crash. 

Finding and deleting bad nodes fast is very important because they can do many bad things. Like they 
steal info or make data not go right or use battery fast or just break the system. Even if data is just a little 
wrong, it can make bad choices happen, especially in health stuff or when watching the environment. 

Also, when bad nodes stay for a long time, they can join together and do a bigger attack that is harder 
to stop. So, we have to stop them early before they do more damage. This way, the network stays good, 
works longer, and the data will be better and not wrong. 

 
4. THE PROPOSED APPROACH 

This paper talks about using machine learning to find bad nodes in mobile WSNs. The idea is to 
check if a node is bad or not by looking at what it does, and then try to make the network safer and not break. 
The way they do it is by using some known algorithms like RF and KNN and SVM. These ones are used a lot 
and people say they are good because they can find stuff in data. 

They tested the models by checking things like accuracy and recall and F1 and precision. These 
things help show if the model is good or bad, like if it misses a bad node or not. The goal is to make the 
wrong guesses as little as possible and find the bad guys correctly. 

There is a figure in the paper (Figure 1) that shows all the stuff like collecting data and fixing it and 
testing it and how the whole thing works from start to end. 

 
 

 
 

a.  Random Forest (RF) 
RF is one of the machine learning stuffs that people use a lot. It helps in knowing what will happen 

later or putting things into groups. The main idea in Random Forest is to use many small trees that decide on 
their own. Each tree makes its own choice first. 

Then, at the end, all the trees vote. If it's for classification, the group that gets the most votes wins. If 
it’s for prediction, they just take the average of what the trees say. So, the result is made after all trees say 
something, and then they put the answers together. 

Figure  1  proposed methods 
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First, important features such as energy usage and packet transmission data are chosen from the data. 
These features are then prepared by cleaning up any mistakes, like missing data or noise. After that, the data 
is divided into two parts: one part to train the model, and the other part to test it. Each tree in the forest is 
built using a method called bootstrap sampling, which means that the data is randomly selected with 
replacement. In each tree, a random selection of features is used at each step to make sure the trees are 
different from each other, which helps to avoid overfitting (when a model is too specific to the training data 
and doesn't work well with new data). The decision nodes in the trees are split using something like Gini 
Impurity, which measures how "impure" or mixed the data is at that point. The tree stops growing based on 
conditions like the maximum depth or minimum samples per leaf. After all the trees are created, the results of 
all the trees are combined to get the final prediction. 

b. Support Vector Machine (SVM)  
            Another effective classification approach is SVM, which is particularly useful for complicated or non-
linear data. It is often employed in network environments for tasks like traffic classification and intrusion 
detection. SVM attempts to identify the optimal border (referred to as a hyperplane) that divides the data into 
distinct groups. The distance between the various classes should be as large as feasible.  Radial Basis 
Function (RBF) kernels and polynomial kernels are two examples of kernel functions that SVM utilizes to 
handle non-linear data. SVM may be used to analyze node activity in WSNs, such as energy consumption or 
data transmission, in order to determine whether or not a node is malevolent. SVM has a significant 
drawback, though, in that it is computationally costly and demands a lot of processing power, particularly 
when dealing with large datasets. For real-time systems, when we require prompt training and predictions, 
this renders it less beneficial. 

c. K-Nearest Neighbours (KNN) 
KNN is more simple than other ones like RF and SVM, but it still works okay for classifying 

networks. People used KNN for things in wireless like checking traffic or finding bad nodes. It looks at a 
new point and then checks what points are near it and picks the group that most of them are in. 

KNN uses things like how much energy the node uses or how often it sends packets. One good thing 
is that it doesn't really need training like others do. So, it can change fast when the network changes or 
moves, like in mobile WSNs. 

But there is a problem. KNN has to look at all the old points and see how far they are from the new 
one, and that can be very slow when there’s a lot of data. Some fixes include doing the search faster or 
reducing the features so it doesn’t have to check too much stuff. 

 
5. PERFORMANCE EVALUATION 

The method used for the simulation is not very strong or powerful, but it still can get the job done 
somehow. The computer system that runs the simulation has an Intel Core i5 processor, which is the 7th 
generation of this kind. This means it is not the newest or the fastest processor out there, but it can still 
handle some work. The CPU runs at a speed of 2.60 GHz, which is okay for normal tasks but not very fast 
compared to newer processors. Also, the computer has seven cores in its processor, and having multiple cores 
means it can do several things at the same time, which is called multitasking. Multitasking is useful 
especially when running simulations because the simulation might need to do many processes at once. 
However, if the simulation is very big or very complicated, this computer might start to slow down or take 
longer to finish. It was made more for regular, everyday tasks, not for heavy or complex simulations, so it 
can struggle if the work is too big or hard. 

An interesting feature of this system is called dual boot. This means that there are two operating 
systems installed on the same machine, and the user can choose which one to use when they turn on the 
computer. The options here are Windows 10 and Windows 8. This is helpful because sometimes one 
operating system might work better with certain software or programs than the other one. So, if one OS 
doesn’t run a program properly, you can switch to the other OS and try it there. While having dual boot is 
useful and gives flexibility, it is not something very critical if you mostly use only one system and don’t 
switch often. 

Talking about memory, the computer has 4 GB of RAM. This is the part of the computer that helps it 
run programs quickly by temporarily storing data that the CPU uses. Four gigabytes are okay for simple tasks 
and small simulations. But if you want to work with big datasets or run more complex simulations, 4 GB 
might not be enough. When the system runs out of memory, it can become slow, freeze, or stop responding. 
So, for heavy or large simulations, this memory size can be a bottleneck and cause problems. But if the tasks 
are not too demanding, 4 GB can be enough to get things done reasonably. 

For the simulations themselves, the programming language used is Python. Python is very popular in 
scientific and research communities because it is flexible and can handle different types of data and 
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problems. Many researchers use Python because it is easy to learn and use, and it has many libraries that help 
with data analysis and simulations. Python is stable and can run experiments without much trouble. However, 
Python is an interpreted language and sometimes it can be slower compared to other languages like C++ or 
Java, especially when the tasks are very big or complicated. Still, for most common scientific tasks and 
simulations, Python works fine and is a good choice. 

Now, the evaluation of the models is very important in this kind of work. If you don’t evaluate the 
models properly, you won’t know if they are actually working well or not. The models here are designed to 
find bad or malicious nodes in Wireless Sensor Networks (WSNs), so it’s necessary to test them thoroughly 
to be sure they can do their job right. You cannot just assume the models work; you must check and verify 
them with proper tests. There are many different ways and metrics to check how well the models perform. If 
a model makes too many mistakes, it’s not useful. Making wrong predictions can lead to false information 
and cause problems. The models should be able to find malicious nodes correctly without making errors. 
They need to be precise, meaning they find the right bad nodes and not mistakenly mark good nodes as bad. 
There are many metrics like accuracy, precision, recall, and F1-score that help measure the performance of 
these models. If the model is not accurate or reliable, then it is not helpful at all. So, proper evaluation is 
necessary to know if the model can work well in real-world situations and be trusted for practical use. 
 

a. Accuracy  
Accuracy is one of the most used performance metrics. It determines the proportion of all projections 

that are accurate, including both true positives and true negatives. This is how it is calculated. 
 

(1) Accuracy  =	 !"#!$
!"#!$#%"#%$

 

 
In general, accuracy is a helpful metric, but it is insufficient in imbalanced datasets, meaning that 

there are many more benign nodes than dangerous nodes. In these circumstances, relying just on accuracy 
might give an inaccurate impression of the model's functionality.  

 
b. True Positive Rate (TPR) 

The percentage of real malicious nodes that the model accurately detects as malicious is called the 
True Positive Rate (TPR), often referred to as recall. In security-sensitive systems, identifying as many rogue 
nodes as possible is critical; a high TPR indicates that fewer harmful nodes are overlooked. 

 
(2) TPR =	 !"

!"#%$
 

c.  False Positive Rate (FPR) 
FPR measures the percentage of benign nodes that are incorrectly classified as hostile. A low FPR is 

essential to avoid unnecessary disruptions from real nodes being mistakenly removed from the network or 
misconstrued as malevolent. This is how it is calculated. 

 
(3) FPR =	 %"

%"#%$
 

 
d.  False Negative Rate (FNR) 

FNR displays the proportion of malicious nodes that are incorrectly classified as benign. A low FNR 
is necessary to ensure that no dangerous conduct is missed by the system. This is how it is calculated. 

 
(4) FNR =	 %$

!"#%$
 

 
e.  Area Under the Receiver Operating Characteristic Curve (AUC-ROC) 

              One way to check if a model is good for classifying stuff is AUC-ROC. It shows how well the model 
can tell bad nodes from good ones. They make a graph with True Positive Rate (TPR) and False Positive 
Rate (FPR). TPR is how many bad nodes the model finds right, and FPR is how many good nodes it says are 
bad by mistake. The AUC number goes from 0 to 1. If it’s close to 1, the model is good. If it’s near 0.5, it’s 
not better than guessing. So higher AUC means better model. This helps to see which model is better when 
choosing between them. 

In WSNs, it’s important to check models because if they make mistakes, it can cause trouble. Like 
saying good nodes are bad (false positives) wastes time and resources. Or missing bad nodes (false negatives) 
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lets bad stuff happen. That’s why people use other numbers too, like accuracy, precision, recall, and F1 score. 
These show how well the model works in different ways. 

Using these helps researchers know if the model works well for real life. Also, network people use 
these to pick the best way to protect WSNs. They want the model that finds bad nodes without too many 
mistakes to keep the network safe and working well. 
 
6. RESULTS 

They compared three machine learning models: SVM, KNN, and Random Forest. The goal was to 
see which one can find bad nodes and good nodes in WSNs. Random Forest was better than the others. It was 
good at telling bad nodes from good ones. The study said Random Forest solved the problem better than the 
other two. It works well because it knows how to handle data right. 

Random Forest did well because it found bad nodes with good accuracy. This is important for 
network security because you want to know if a node is bad or not. Another reason Random Forest is good is 
that it makes fewer mistakes. Some models say good nodes are bad by accident, and that causes problems for 
the network. But Random Forest makes fewer of these mistakes because it uses many decision trees, so it 
stays more correct. 

The system was also good at finding bad nodes early. This matters a lot for WSNs because you want 
the network to be safe and working right. If you find bad nodes fast, you stop problems before they happen. 
When we look at SVM and KNN, they worked okay, but not as good as Random Forest. For example, SVM 
missed some bad nodes sometimes. It didn’t catch all threats. Its accuracy was okay but not perfect. 

Then there's KNN, which struggled with false positives. It sometimes flagged benign nodes as 
malicious, which could cause unnecessary disruptions. Although KNN did an okay job in several areas, it 
couldn’t reconcile the issue of false positives while still performing comparably to SVM. In the end, the 
Random Forest model clearly outperformed the others because it offered a much more balanced and reliable 
solution for detecting malicious nodes, making it more effective in real-world applications. Random Forest 
was suitable for applications requiring comprehensive and well-rounded performance because of its notable 
ability to maintain equilibrium across several assessment metrics. Although Random Forest has shown 
adaptability in addressing the various node classification challenges, the other models tended to outperform it 
in certain metrics at the price of others. 

 

 

 

This study emphasizes the value of cutting-edge machine learning methods, such as Random Forest, in 
improving WSN security and efficiency and strengthening their resistance to security risks. The 
measurements for the three models are displayed in Figure 2, and the proportional results of the three model 
measures are displayed in Figure 3. Because of its supremacy, Random Forest is the recommended option for 
real-world applications that need accurate node categorization in WSNs. Furthermore, the model is an 
effective instrument for guaranteeing network security due to its strong architecture and capacity to manage 
various dynamic datasets. 

Figure 2 Results of The Measurements for The Three Models 
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The energy consumption of machine learning models is a crucial consideration when evaluating their 

suitability for real-world applications in the context of WSNs. Since nodes in WSNs are usually battery-
powered and positioned in isolated or challenging-to-reach areas, energy efficiency is a top priority. Models 
such as SVM, KNN, and Random Forest are evaluated based on their energy efficiency in addition to their 
detection and accuracy. Figure 4 displays each model's energy usage. 

 
a. Energy Consumption in SVM 
Support Vector Machines, especially when using a kernelized version like the Radial Basis Function (RBF) 
kernel, are computationally intensive. The energy consumed by SVM primarily depends on the size of the 
dataset and the kernel computation. Training SVM can be resource-demanding because it involves solving a 
quadratic optimization problem, particularly with large datasets or high-dimensional features. However, in 
deployment, SVM's prediction process is relatively efficient, as it only involves calculating the distance of a 
sample to the support vectors. Despite this, the energy consumption during training may render SVM less 
favorable in energy-constrained systems unless the model is trained offline and only deployed in the WSN. 
 
b. Energy Consumption in KNN 
K-Nearest Neighbors is a non-parametric model, meaning it does not build a predictive model during training 
but instead stores the training data for reference. While this makes KNN energy-efficient during training, its 
prediction process is computationally expensive. Every time a new node needs to be classified, KNN 
calculates the distance from the test sample to all stored samples, leading to high energy consumption during 
inference. This is particularly problematic in WSNs where nodes have limited processing capabilities. The 
larger the dataset, the higher the energy requirements for KNN’s classification, making it less suitable for 
scenarios with frequent or real-time predictions. 

 
c. Energy Consumption in Random Forest 
Random Forest balances energy economy and computing complexity. Creating several decision trees is 
necessary for Random Forest training, which can be computationally demanding. However, this procedure is 

Figure 3 Results of The Three Model Measures by Proportions. 
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usually carried out offline in environments with plenty of resources. The energy consumption of Random 
Forest during deployment in WSNs is significantly reduced since it uses a computationally light inference 
procedure that traverses a limited number of decision trees. Because of this, Random Forest uses a lot less 
energy during the running duration than KNN. Furthermore, robust is Random Forest's ensemble nature, 
which ensures accurate classifications without consuming a significant amount of resources. 
 
Comparison and Perspectives  
1. Training Phase: Although training is usually conducted offline, SVM and Random Forest often consume 
more energy than KNN. While Random Forest creates several trees for training, SVM enhances support 
vectors. KNN utilizes extremely minimal energy during training because it just needs data storage.  
2. Inference Phase: KNN consumes the greatest energy as it has to calculate distances for every test instance.  
SVM has a comparatively low inference energy consumption and classifies data using support vectors.  
Random Forest consumes the least amount of energy during deployment as it just evaluates a subset of trees 
for predictions. 
3. Scalability: Random Forest handles scalability better because more data has little impact on the energy 
required to traverse decision trees, whereas KNN's energy consumption rises linearly with dataset size and 
becomes unaffordable; SVM's energy requirements rise with the number of support vectors and kernel 
complexity. 
 
Useful Consequences for WSNs  
Given WSN energy constraints, Random Forest is the most practical choice for deployment. Its energy-
efficient inference phase allows nodes to perform classifications without rapidly depleting their energy 
storage. Even though SVM saves energy when it works, its training part needs a lot of power, so it can't be 
used in places where there isn't much energy. KNN uses a lot of energy when it tries to classify, so it’s not 
good for fast or many classifications in WSNs. But sometimes, if it’s okay to guess randomly, KNN can be 
used. Random Forest uses energy better than the others, so WSNs can last longer and still work well. This 
means you don’t have to fix things or change batteries too often. Because of this, Random Forest is the best 
choice for WSNs that need to save energy. 
Table 1 shows the good and bad points of the three models based on how well they did. 
. 

 

 
Table 1: Advantages and disadvantages of the three models. 

Model Advantages Disadvantages 
SVM 1. Effective in binary classification. 

2. Performs well in high-dimensional spaces. 
3. Works well with non-linear data when using kernels. 

1. Long training time for large datasets. 
2. Sensitive to noise and overlapping data. 

KNN 1. Simple and easy to implement. 
2. No training process required. 
3. Performs well on small to medium datasets. 

1. Affected by large datasets. 
2. Requires large memory. 
3. Sensitive to unbalanced data. 

Random Forest 1. Robust and reliable with good performance in most 
cases. 
2. Handles large and diverse data. 
3. Reduces overfitting risk. 

1. Long training time for large datasets. 
2. Hard to interpret due to multiple trees. 

7. CONCLUSION  
This research talks about how important it is to keep the network safe and working well. It made a 

strong way to find bad and good nodes in WSNs using machine learning. They looked at three models: SVM, 

Figure 4 Energy Consumed In Each Model. 
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KNN, and Random Forest. They compared them to see which one is more accurate, faster, and uses less 
energy. Random Forest was the best because it was good at accuracy, speed, and saving energy. The results 
showed that Random Forest is a good choice for WSNs that need to last long and work well. KNN used more 
energy, so it was not very good at saving power when classifying. SVM was okay but not the best, and it 
used resources badly. 

This work shows that Random Forest can find bad nodes right and keep the network working. It 
proves that machine learning is important to make WSNs more secure. The system they made can help with 
future security ideas, especially for places with few resources. This could help make smart networks and 
industries better in the future. 
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