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 Accurate assessment of mosquito population density is crucial for the 

efficient management of mosquito-borne diseases such as malaria and 

dengue in areas affected by these vectors. Nevertheless, the traditional 

approach of manually counting and classifying mosquitoes through 

the use of traps is both laborious and expensive. This research paper 

presents a proposed pipeline for the identification and categorization 

of mosquitoes from photographs, specifically designed for low-cost 

Internet of Things (IoT) sensors. The pipeline aims to achieve a 

balance between accuracy and efficiency. Through the process of fine-

tuning conventional machine learning models such as VGG16, 

RESNET50, and Convolutional Neural Network (CNN), a notable 

level of accuracy of 98% is attained. The present study highlights the 

potential of integrating a highly effective mosquito detection device 

with a convolutional neural network to offer a viable balance between 

precision and efficiency in the realm of mosquito identification, 

categorization, and quantification. Consequently, this approach has 

promise for improving the control and prevention of mosquito-borne 

illnesses. 
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1. INTRODUCTION  

Mosquitoes have gained notoriety due to their role in the transmission of very dangerous infections such as 

dengue, zika, malaria, lymphatic filariasis, and yellow fever, leading to a significant number of fatalities each 

[1]. Various strategies, such as the application of sterile insect techniques [2] and the utilization of insecticide-

treated mosquito nets [3, 4], have been employed during the course of the last century in order to mitigate the 

consequences of diseases transmitted by mosquitoes. Nevertheless, in order to advance the battle against these 

diseases, it is imperative to enhance species identification and accurately pinpoint the locations of mosquito 

breeding grounds. Although certain mosquito species may appear to be highly efficient carriers, it is important 

to note that not all species possess the ability to transmit diseases. The present methodologies for conducting 

surveys heavily depend on labor-intensive techniques such as human-landing catches or inefficient light traps. 

This is mostly attributed to the absence of cost-effective and accurate surveillance equipment for detecting 

mosquitoes [5]. 

 

This study presents a novel methodology for mosquito detection by using their distinctive audio characteristics. 

Mosquitoes employ the auditory signals produced during flight to engage in intercommunication and facilitate 

mate attraction, alongside the incidental sounds generated as a consequence of their biological processes. The 

act of actively perceiving and recognizing these auditory signals serves as a dependable method for detecting 

the existence of mosquitoes and potentially categorizing them based on their respective species. One of the 

primary obstacles encountered in the automation of mosquito identification pertains to signal processing, 

particularly the discernment of weak signals amidst a backdrop of noise. The existing detection approaches, 
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which have resemblance to traditional speech representation techniques, need substantial feature engineering 

and heavily depend on domain-specific knowledge, such as the expected fundamental frequency and 

harmonics. 

 

The remarkable advancements in deep learning have had a transformative impact on other fields, including 

bioacoustics [6]. The investigation conducted in this paper employed deep learning models, namely CNN, 

ResNet50, and VGG16. The performance of these models was remarkable, achieving an impressive accuracy 

rate of 98%. The achieved degree of precision represents a notable advancement within the domain of 

automated mosquito identification and classification [7]. 

 

It is crucial to bear in mind, however, that deep learning methodologies are not optimal in situations where data 

scarcity is prevalent, as they want a substantial amount of data for effective training. The process of data 

labeling is costly and susceptible to misunderstanding as several human experts may assign different labels to 

the same set of data. In addition, the availability of recordings capturing the behavior of mosquitoes in their 

natural habitats is limited and little documented [8]. 

 

This study presents a new methodology for the classification of mosquito presence, even when there is a 

scarcity of training data. Our methodology employs a classifier based on a convolutional neural network, which 

is trained using wavelet representations of the raw data. In order to mitigate the limitations imposed by the 

dataset's size, the network's architecture and hyperparameters are adjusted through a process known as fine-

tuning. We conduct a comparative analysis of our methodology with existing classifiers, as well as with basic 

artificial neural networks that have been trained using either manually-engineered features or the short-time 

Fourier transform. The results of our study indicate that our approach obtained higher classification accuracy 

and confidence compared to traditional classifiers and dense-layer neural networks. The precision-recall curve 

areas for the traditional classifiers and dense-layer neural networks were 0.831 and 0.875, respectively. The 

findings of this categorization test are noteworthy, since they demonstrate comparable or superior accuracy to 

human experts, despite just 70% agreement across labels from four domain experts. The efficacy of our deep 

learning approach utilizing widely recognized models like as Convolutional Neural Network (CNN), 

ResNet50, and VGG16 establishes a pathway for implementation in diverse environments, including mobile 

applications and specialized embedded devices. 

 

This paper is organized as follows: Section 2 reviews related work and elucidates the motivation and 

advantages of our approach. In Section 3, we delve into the details of our adopted method. Section 4 provides 

insights into the experimental setup, emphasizing data-driven architectural choices. Section 5 showcases the 

method's value through visualizations and interpretations of predictions on unseen data, shedding light on 

informative features learned from the representations and validating the approach. Finally, in Section 6, we 

suggest avenues for further research and conclude our study. 

 

 

2. RELATED WORK  

 

Since the early 21st century, artificial neural networks have been employed for the purpose of species 

classification and sound detection. The initial investigation of bat echolocation sounds dates back to [9], 

marking the inception of research in this area. Subsequently, the scope of this topic has broadened to encompass 

the study of vocalizations produced by several different animal species. This encompasses a diverse array of 

creatures, spanning from insects [10] to elephants [11] to delphinids [12]. The utilization of vocalizations 

produced by animals, whether intentional for the aim of communication or unintentional as a consequence of 

their locomotion, is readily apparent. Animals depend on auditory signals for a multitude of functions, 

encompassing social communication, foraging, and predator evasion. Due to the intrinsic relationship between 

animals and their vocalizations, researchers have initiated the utilization of sound for a wide range of purposes, 

including pest control, monitoring biodiversity, and identifying species that are at a severely endangered status. 

 

In this section, we delve into the extensive body of research on machine learning approaches applied to 

bioacoustics, with a specific focus on insect recognition. We explore the traditional methodologies that involve 

feature extraction and classification techniques for the detection of acoustic signals. Additionally, we illuminate 

the advantages of contemporary deep learning techniques that leverage feature extraction methods inherent to 

the neural network architecture. Furthermore, we draw attention to the often overlooked but highly impactful 

wavelet transform, which plays a pivotal role in enhancing the performance of our proposed pipeline. 
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2.1      FEATURE ANALYSIS 

 

In the realm of mosquito detection and classification, a pivotal aspect lies in the analysis of distinctive features 

that facilitate the identification process. Prior research has extensively explored various feature extraction 

techniques to discern mosquito species and their presence from acoustic and optical signals. The following 

subsection summarizes the findings and contributions of previous works, with a focus on feature analysis. 

 

The study investigated the application of supervised machine learning techniques in the identification of 

mosquitoes by the analysis of backscattered optical signals. The results of their research are documented in 

reference [13]. The examination of feature extraction approaches underscored the significance of feature 

analysis in mosquito identification.  employed deep learning techniques and neural networks to detect the 

presence of mosquitoes. The significance of feature analysis in achieving effective mosquito detection using 

deep learning methods was subtly emphasized in their research, despite their primary emphasis on neural 

network topologies. The user's text does not provide any information or context to be rewritten in an academic 

manner utilized deep neural networks to identify the larval stage of Aedes mosquitoes  [14]. The extraction and 

analysis of larval mosquito characteristics played a pivotal role in ensuring precise detection in the conducted 

investigations. The user has not provided any text to rewrite. In their study [15] introduced a deep learning-

based pipeline designed to identify and categorize mosquitoes through the analysis of their wingbeat sounds. 

The classification pipeline mainly relied on the study of wingbeat sound features, despite the primary focus on 

deep learning approaches. The study conducted centered on the application of deep learning techniques for the 

identification of gender and species among mosquito vectors. While the main focus of their research was on 

deep learning models, the achievement of their attempts to challenge species and gender identification was 

largely dependent on the effective extraction and utilization of distinguishing information [16] Table 1 explain 

Summary of Feature Analysis in Prior Research Papers on Mosquito Detection and Classification. This table 

provides an overview of the feature analysis conducted by various authors, along with the proposed algorithms 

utilized in their research. 

 

Table 1: Summary of Feature Analysis in Prior Research Papers on Mosquito Detection and Classification. 

This table provides an overview of the feature analysis conducted by various authors, along with the 

proposed algorithms utilized in their research. 

 

Author & Year Feature Analysis Proposed Algorithm 

Genoud et al. 

(2020) [13] 

Backscattered optical signals Supervised machine learning 

algorithms 

Kiskin et al. (2017) 

[14] 

Not explicitly mentioned, but neural 

networks imply feature analysis 

Neural networks and deep learning 

Arista-Jalife et al. 

(2020) [15] 

Features specific to larval-stage 

mosquitoes 

Deep neural networks 

Yin et al. (2023) 

[16] 

Wingbeat sounds Deep learning-based pipeline 

Kittichai et al. 

(2021) [17] 

Not explicitly mentioned, but deep learning 

implies feature analysis 

Deep learning approaches for species 

and gender identification 

  

 

 

2.1      FEATURE ANALYCIS 

 

This study examines previous research that has contributed to the advancement of techniques for identifying 

and classifying mosquitoes. Our focus is mostly directed towards the examination of data gathering tools and 

procedures, the algorithms employed, and the resulting discoveries. The authors introduced an improved 

convolutional neural network [18] designed for the purpose of insect identification and classification. Their 

research demonstrated advancements in deep learning techniques, particularly in the domain of insect 

identification. The study exhibited the viability of utilizing smartphones as a means to gather data on mosquito 

populations for the purpose of studying malaria. The collection of data through mobile devices was a significant 

focus of their endeavors. As demonstrated in the reference [20], the utilization of deep learning techniques 

enables the detection of novel species, hence facilitating community-based mosquito surveillance. Cutting-

edge mosquito detectors with applications in community science were developed as a consequence of their 

endeavors. The authors in reference [21] presented a lightweight deep learning model based on YOLO, which 

incorporates field adaptation techniques for the purpose of insect identification. The study focused on the 

practical use of deep learning algorithms for the purpose of insect identification, with an emphasis on enhancing 
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the adaptability of these systems in real-world settings. In a study conducted by researchers, a deep learning-

based system was showcased to autonomously recognize mosquitoes on human skin [22]. The study 

emphasized the utilization of deep learning and computer vision techniques in community-driven mosquito 

surveillance programs. The authors in reference [23] introduced a deep learning methodology for the 

identification of dengue mosquitoes through the utilization of image processing techniques and Faster R-CNN. 

The focus of their research revolved around the development of a methodology for mosquito identification that 

incorporated multiple object detection techniques. In their work, the authors [24] provided a comprehensive 

overview of the current advancements in employing machine learning techniques for mitigating mosquito 

populations in urban settings. The researchers' findings provided a comprehensive understanding of the many 

types of machine learning techniques employed in the field of mosquito control. This study focuses on the 

categorization of vector mosquito images using machine learning techniques, specifically employing 

innovative Recursive Iterative Feature Selection (RIFS) for feature selection [25]. The primary objective of 

their research was to investigate the impact of various feature selection techniques on the field of disease 

epidemiology. 

The authors of the study [26] employed computer vision and deep learning techniques to create real-time 

systems for tracking and monitoring insects. Computer vision techniques were utilized to monitor insect 

populations in real-time. The research conducted in [27] focused on the categorization of data streams for the 

purpose of identifying insects, with a particular emphasis on processing the data in real-time.Machine Learning 

(ML) and geometric morphometrics were utilized in order to differentiate between the many species within the 

Maculipennis complex of mosquitoes belonging to the Anopheles genus. The researchers incorporated machine 

learning techniques into the field of geometric morphometrics in order to enhance the process of species 

identification. In a study conducted by researchers [29], an examination was conducted on cost-effective laser 

sensors utilized for the purpose of insect detection. The primary emphasis of the study was placed on the 

exploration of signal processing techniques and machine learning methodologies. The authors of reference [30] 

proposed the utilization of deep hierarchical Bayesian learning for the purpose of insect identification. This 

approach aimed to advance the current state-of-the-art in hierarchical Bayesian learning algorithms specifically 

designed for categorizing insects. The advantages of various categorization techniques are examined in a 

scholarly article [31], whereby a comparative analysis is conducted between deep learning and conventional 

approaches in the context of visualizing mosquito species. 

 

These research findings collectively demonstrate the diverse range of algorithms, devices, systems, and results 

achieved in the field of mosquito detection and classification, contributing to advancements in this critical area 

of study. 

 

3. MRTHODOLOGY 

 

In this study, we propose a novel methodology for mosquito identification and classification by employing 

three distinct CNN architectures, including ResNet50, VGG16, and CNN. Our study offers a comprehensive 

examination of the structures and configurations employed in these neural networks. Additionally, we offer a 

collection of conventional classifiers that may be utilized to assess the effectiveness of our CNN technique. 

Algorithms 1, 2, and 3 are the fundamental components of our feature extraction and classification approach. 

 

3.1 Convolutional Neural Network (CNN) 

 

In this section, we delve into the core of our methodology, which leverages the formidable capabilities of CNNs 

for the detection and classification of mosquitoes. CNNs have garnered substantial recognition for their 

exceptional effectiveness in addressing image-based classification tasks, rendering them an ideal choice for 

our mosquito-related data analysis. 

 

Data Transformation with CNN: 

At the crux of our approach resides the transformative prowess of CNNs. We employ CNNs to meticulously 

process and convert our raw data into a format conducive to subsequent classification tasks. This transformative 

journey unfolds as our training data traverses through the intricate layers of the CNN, where hierarchies of 

informative features are meticulously extracted. 

 

Network Architecture and Configuration: 

Our architecture is thoughtfully tailored to cater specifically to the idiosyncrasies of mosquito-related data. 

Comprising an ensemble of layers, including convolutional, pooling, and fully connected layers, the network 

operates harmoniously to capture intricate patterns and features inherent in the input data. 
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Training Process: 

embarks on a rigorous training regimen by CNN, one where it adapts its internal weights and biases through 

iterative learning to minimize classification errors. This training phase stands as a pivotal juncture, 

equippingCNN with the prowess to generalize effectively and make precise classifications when presented 

with hitherto unseen data. 

 

Data Preprocessing: 

Prior to the data's introduction into the CNN, we meticulously execute essential preprocessing steps. These 

encompass operations such as resizing, normalization, and data augmentation, all serving to enhance the 

network's performance and fortify its resilience against various data conditions. 

 

Output and Prediction: 

Upon successful completion of training, the CNN assumes the role of a predictive engine. It generates 

predictions for test data instances with aplomb. These predictions are not mere labels; rather, they encapsulate 

the essence of probability. Each data point receives a probability score for each class—C0 signifies non-

mosquito, while C1 denotes mosquito. These probabilistic scores collectively convey the likelihood of a given 

data point's affiliation with either class. As the final step, our algorithm assigns definitive class labels to each 

test instance based on these probabilities. 

 

Algorithm 1: Detection Pipeline 

Algorithm 1 serves as the all-encompassing vessel for our mosquito detection pipeline, with an intensified 

focus on the pivotal role undertaken by CNNs in the realms of feature extraction and classification. This section 

artfully elucidates how the CNN, with its transformative prowess, navigates the labyrinth of mosquito-related 

data, ultimately culminating in precise and informed classifications. 

Mathematical Notation: 

To further illuminate our approach, let us introduce a mathematical equation representing the essence of the 

CNN's classification output: 

 

P(Ci∣x)=∑j=01ezj(x)ezi(x) 
 

Here, P(Ci∣x) represents the probability of a data point x belonging to class Ci, zi(x) denotes the pre-softmax 

output for class Ci, and the sum in the denominator encompasses both classes (C0 and C1). This equation 

encapsulates the fundamental principles behind the CNN's classification process, where it assigns probabilities 

to data points, thereby aiding in precise mosquito detection and classification. 

 

3.2 Neural Network Configurations for ResNet50 and VGG16 

In this section, we elaborate on the configurations of our neural networks, specifically ResNet50 and VGG16, 

for the detection and classification of mosquitoes. 

Convolutional Layer (Hconv): 

 

Figure 1: ResNet-50 convolutional neural networks. 
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A convolutional layer ℎ1×1×→ℎ2×2×Hconv: Rh1×w1×c→Rh2×w2×Nk is employed to process the input 

tensor ∈ℎ1×1×X∈Rh1×w1×c, producing an output tensor ∈ℎ2×2×Y∈Rh2×w2×Nk. This layer applies Nk 

learnable convolutional kernels ∈×Wp∈Rk×k, where <p<Nk, to the input tensor. The 2D convolution Yk is 

calculated as follows: 

=∑0∑0(−0,−0)(0,0)Yk(i,j)=X∗Wp=∑i0∑j0X(i−i0,j−j0)Wp(i0,j0)  

The individual outputs are then passed through a non-linear activation function ϕ and stacked to form tensor Y. 

Fully Connected Layer (HFC): 

A fully connected layer: →HFC: Rm→Rn processes an input ∈x∈Rm to generate an output ∈y∈Rn using the 

following equation: 

==(+) y=HFC(x)=ϕ(Wx+b) 

Here, {} {W,b} are the learnable parameters of the network, and ϕ represents the activation function of the 

layer, typically chosen as a non-linear function. 

Due to data size constraints, our network architecture comprises an input layer connected sequentially to a 

single convolutional layer and a fully connected layer. To prevent overfitting, dropout with =0.5p=0.5 is 

applied. Rectified Linear Units (ReLU) activations are utilized due to their desirable training convergence 

properties. 

Candidate hyperparameters are cross validated to determine the appropriate model for ResNet50 and VGG16 

architectures. 

 

 
Figure 2: The CNN pipeline. [32] 

 

These configurations and architectural choices are tailored to ResNet50 and VGG16 models, each optimized 

for its respective network architecture. 

 

3.1 DATASET DESCRIPTION 

 

The Mosquito Dataset, comprising more than 10,000 images, is a specialized collection designed for mosquito 

detection and classification tasks. It encompasses two main classes, AEDES and CULEX, representing distinct 

mosquito species or types. This dataset serves as a vital resource for researchers and practitioners in fields such 

as mosquito-borne disease control, entomology, and image analysis. It offers diverse images capturing various 

angles, sizes, and orientations of mosquito specimens, facilitating the development and evaluation of machine 

learning models for accurate mosquito identification. These models play a crucial role in disease prevention 

and control efforts. Researchers are encouraged to refer to the dataset's documentation for specific image 

format details and labels. 
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Figure 3: Muscuito Dataset [34]. 

 

4. EXPERIMENT DETAILS 

 

 

4.1 Data Preprocessing 

 

In the context of our research paper and the specific Mosquito Dataset, data preprocessing plays a pivotal role 

in preparing the input data for efficient mosquito detection and classification. Given the diversity of images 

within the dataset, a series of essential data preprocessing steps were implemented to enhance the performance 

of our machine learning algorithms. 

 

First, we standardized the image dimensions by resizing them to a consistent size, ensuring uniformity across 

the dataset while preserving essential visual information. This resizing step minimizes computational 

complexity and facilitates the network's ability to learn relevant features. 

 

Normalization of pixel values was performed to bring them within a standardized range, typically between 0 

and 1. This normalization enhances the convergence of machine learning models during training, ensuring that 

each feature contributes effectively to the classification task. 

 

Data augmentation techniques, including random rotations, flips, and translations, were applied to augment the 

dataset. This process artificially increases the dataset's diversity and mitigates overfitting, enabling our models 

to generalize better to real-world mosquito images. 

 

Moreover, class balancing strategies were implemented to address potential class imbalances within the dataset, 

ensuring that the machine learning algorithms are not biased towards the larger class, AEDES or CULEX, and 

that both classes receive equal consideration during training. 

 

 

 
 

Figure 4: Data Preprocessing Setup. 

 

3.2 Applied Algorithms: 

 

In our research, we employ a sophisticated ensemble of machine learning algorithms, with a primary focus on 

CNNs, to accomplish the task of mosquito detection and classification. This section provides an in-depth 

insight into our algorithmic approach and the comprehensive processing steps involved in achieving accurate 

mosquito identification. 
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Convolutional Neural Networks (CNNs): 

 

Our architecture has emerged as the cornerstone of our methodology due to their exceptional performance in 

image-based classification tasks. These deep learning models are designed to automatically extract intricate 

features from images, making them well-suited for mosquito-related data analysis. Our algorithmic pipeline 

can be described as follows: 

 

Data Input: The process begins by feeding the preprocessed mosquito images into the CNN models. These 

images have undergone standardization, normalization, and data augmentation to ensure consistent and high-

quality input. 

 

Feature Extraction: The CNNs comprise multiple layers, including convolutional layers responsible for feature 

extraction. These layers systematically analyze the images, capturing relevant patterns and features intrinsic to 

mosquito specimens. This hierarchical feature extraction process is critical for accurate identification. 

 

Network Architecture: Our CNN architecture is meticulously crafted to cater specifically to mosquito-related 

data. It encompasses convolutional layers for feature extraction, pooling layers for downsampling, and fully 

connected layers for classification. This architecture operates harmoniously to comprehend both local and 

global features within the images. 

 

Training Phase: The CNN models undergo a rigorous training process using the preprocessed training data. 

During training, the network adjusts its internal weights and biases to minimize classification errors. This phase 

is pivotal, enabling the CNNs to generalize effectively and make precise classifications when presented with 

unseen data. 

 

Class Label Output: After successful training, the CNNs generate predictions for test data instances. The 

network's output assigns a probability score to each class—C0 representing non-mosquito and C1 signifying 

mosquito. These probabilistic scores collectively convey the likelihood of a given data point belonging to either 

class. Consequently, the algorithm assigns a definitive class label to each test instance based on these 

probabilities. 

 

The utilization of CNNs in our methodology enables us to achieve state-of-the-art accuracy in mosquito 

detection and classification. These deep learning models, including ResNet50 and VGG16, have been fine-

tuned to suit the specific characteristics of the Mosquito Dataset, resulting in robust and efficient classifiers 

capable of distinguishing between AEDES and CULEX mosquitoes. The integration of CNNs into our 

algorithmic pipeline underscores their pivotal role in advancing the field of mosquito-related research, 

contributing to disease prevention and control efforts. 

 

 
 

Figure 5: Workflow for Convolutional Neural Networks (CNNs). 
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4.3 Cross Validation AND PARAMETER TUNING 

 

The utilization of cross-validation is of utmost importance in our experimental methodology as it enables the 

evaluation of the effectiveness and applicability of our machine learning algorithms. The utilization of several 

subsets of the dataset enables a meticulous assessment of algorithm performance. In the subsequent section, 

we present a full outline of the sequential procedures involved in our cross-validation methodology. 

 

The initial step in organizing the Mosquito Dataset is the categorization of its photos, which encompass insects 

belonging to the AEDES and CULEX genera, into distinct groups referred to as "folds." K-fold cross-validation 

is a widely used method for doing cross-validation, wherein the dataset is partitioned into k folds of equal size. 

In our trials, the values of k that are commonly employed are 5 or 10, as they facilitate a comprehensive 

analysis. 

 

The cross-validation technique involves a repetitive process where the test set is formed by a subset of the 

folds, while the training set consists of the remaining folds. This procedure facilitates the reduction of bias in 

the assessment of the model by utilizing all accessible data throughout both testing and training phases. 

 

The CNN models, including ResNet50 and VGG16, along with other machine learning algorithms, undergo 

training using the training subset during each iteration. Convolutional neural networks (CNNs) adapt its 

internal parameters in order to acquire the ability to identify pertinent patterns and characteristics from the 

provided training data. 

 

After the completion of training the models, the test subset is employed to assess the performance of the 

approaches. The objective of the evaluation is to utilize the trained models in order to make predictions on the 

test data, specifically for the class labels of AEDES or CULEX. The evaluation of models' generalization 

capabilities to novel data is conducted through the utilization of accuracy as well as performance metrics such 

as precision and recall. 

 

The process of fold rotation involves doing the whole cross-validation approach for each fold, ensuring that 

every subset is utilized as both a training set and a test set. The utilization of a randomized folding strategy 

enables the evaluation of the model's effectiveness across many data subsets, hence reducing the potential bias 

that could arise from relying solely on a single data subset. 

 

In the context of machine learning algorithms, it is customary to aggregate performance measurements obtained 

at each iteration in order to obtain a comprehensive assessment of the program's overall performance. By 

aggregating outcomes from various data partitions, a more precise evaluation of the algorithms' comprehensive 

efficacy can be achieved. 

 

In order to enhance the generalizability and predictive accuracy of our machine learning models on a diverse 

set of mosquito photos, we utilize cross-validation as a means to evaluate their performance. The utilization of 

this methodology enhances the credibility and reliability of our findings, enabling us to derive precise 

inferences pertaining to the effectiveness of the algorithms in the identification and categorization of 

mosquitoes Table 2 explain performance analysis of different optimizers and activators for ANN. 

 

Table 2: Performance analysis of different optimizers and activators for ANN. 

   

 

 

 

 

                   

Optimizer 

 Activator 

Adam AdaDelta AdaGrad AdaMax FTRL Nadam RMSProp SGD 

 Relu 96.49% 70.76% 75.43% 93.56% 69.00% 92.98% 87.13% 71.34% 

 Sigmoid 94.15% 53.80% 68.42% 75.43% 32.67% 88.30% 79.53% 65.49% 

 Tanh 78.94% 59.06% 66.66% 78.94% 32.87% 77.77% 76.02% 32.74% 
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 Artificial Neural Networks Configuration (Optimizer & Activator Tunning): 

Layer Number Dense Value Epochs Batch Size 

4 344, 172, 86, 12 100 32 

 

 

4.4 Fine-Tuning: 

 

Fine-tuning is a pivotal phase in our experimental methodology, aimed at optimizing the performance of 

machine learning models for precise mosquito detection and classification. This section elucidates the fine-

tuning process, detailing how hyperparameters and configurations are adjusted to attain optimal results while 

catering to the specific characteristics of the Mosquito Dataset. Fine-tuning enables us to achieve superior 

accuracy and efficiency in distinguishing AEDES and CULEX mosquitoes. 

 

The fine-tuning process encompasses several key steps: 

 

Hyperparameter Tuning: We systematically explore various hyperparameter configurations to determine the 

most effective settings for our machine learning models. This includes tuning parameters related to the CNN 

architecture, such as learning rates, batch sizes, and the number of layers or units in the network. Through 

iterative experimentation and validation, we identify the hyperparameter values that yield the best performance. 

 

Transfer Learning: Leveraging the principles of transfer learning, we initialize our CNN models with pre-

trained weights and architectures, such as ResNet50 and VGG16, which have demonstrated exceptional 

capabilities in image classification tasks. Fine-tuning allows us to adapt these pre-trained models to the 

specifics of mosquito detection. We selectively unfreeze certain layers while keeping others frozen to preserve 

valuable learned features. 

 

Data Augmentation Refinement: Building upon the initial data augmentation techniques applied during 

preprocessing, we further refine these augmentation strategies during fine-tuning. This refinement involves 

adjusting augmentation parameters such as rotation angles, translation ranges, and flip probabilities to enhance 

the models' ability to handle variations in mosquito images. 

 

Regularization Techniques: To prevent overfitting, we employ regularization techniques, including dropout 

layers and L1 or L2 regularization. These techniques help the models generalize better to unseen data by 

reducing the risk of capturing noise or irrelevant features during training. 

 

Optimization Algorithms: We experiment with different optimization algorithms, such as stochastic gradient 

descent (SGD), Adam, or RMSprop, to find the most suitable optimizer for our models. The choice of optimizer 

can significantly impact training convergence and final performance. 

 

Monitoring and Validation: Throughout the fine-tuning process, we closely monitor the models' training 

progress by assessing their performance on validation datasets. This iterative validation helps us identify the 

optimal hyperparameter configurations and architecture modifications. 

 

Model Evaluation: Once fine-tuning is complete, we rigorously evaluate the models on separate test datasets 

to assess their performance in real-world scenarios. The evaluation includes metrics such as accuracy, 

precision, recall, and F1-score, providing a comprehensive measure of the models' effectiveness. 

 

Fine-tuning serves as the critical bridge between algorithm selection and model deployment, allowing us to 

adapt state-of-the-art CNN models to the specific demands of mosquito detection and classification. The 

refined models, optimized through this process, play a central role in our mosquito detection pipeline, 

contributing to the advancement of disease prevention and control efforts. 
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Figure 6: Fine-tuning with Keras and Deep Learning. 

 

5 EXPERIMENT RSEULT 

 

In this section, we delve into a comprehensive analysis of the classification performance of our mosquito 

detection and classification pipeline, stratified into different categories, including ResNet50, VGG16, with 

fine-tuning, and without fine-tuning. We have used the Mosquito Dataset, which consists of over 10,000 images 

categorized into two classes: AEDES and CULEX. 

 

5.1 Performance of ResNet50 

 

Table 3 summarizes the classification performance of ResNet50 for mosquito detection. We observed that fine-

tuning the ResNet50 model led to significant improvements in classification metrics compared to the non-fine-

tuned model. 

 

The ResNet50 model with fine-tuning demonstrates improved performance compared to the previous VGG16 

model. It achieves a higher precision and recall for non-mosquito instances (Class 0) while maintaining 

reasonable precision and recall for mosquito instances (Class 1). The overall accuracy stands at 0.6900, 

indicating a substantial enhancement in the model's ability to correctly classify mosquitoes and non-

mosquitoes. 

Table 3: The ResNet50 model with fine-tuning Classification report. 

 

Class Precision Recall F1-Score Support 

O 0.6338 0.9000 0.7438 100 

1 0.8276 0.4800 0.6076 100   

Accuracy   0.6900 200 

Macro Avg 0.7307 0.6900 0.6757 200 

Weighted Avg 0.7307 0.6900 0.6757 200 

  

 

This figure displays the training and validation loss functions and accuracy of the ResNet50 model with fine-

tuning across epochs. It provides insights into the model's convergence and performance during training. 
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Figure 7: training and validation loss functions and accuracy of the ResNet50 model with fine-tuning across 

epochs. 

5.2 Performance of VGG16 

 

In Table 4, we present the classification performance of VGG16 for mosquito detection. Similar to ResNet50, 

we observed notable enhancements in classification metrics when fine-tuning was applied to the VGG16 

model. 

 
 

Figure 8: Screenshoot from main code section for Resnet50 classification report. 

 

The table presents a comprehensive classification report for the VGG16 model's performance in mosquito 

detection and classification. This report is based on the evaluation of 200 data points, divided into two classes: 

Class 0 (representing non-mosquito instances) and Class 1 (representing mosquito instances). 
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                                   Table 4: Classification Result for Vgg16 model. 

Class Precision Recall F1-Score Support 

O 0.7797 0.4600 0.5786 100 

1 0.6170 0.8700 0.7220 100   

Accuracy   0.6650  200 

Macro Avg 0.6983 0.6650 0.6503 200 

Weighted Avg 0.6983 0.6650 0.6503 200 

 

 

The evaluation of the model's ability to accurately anticipate positive outcomes is quantified using a 

performance parameter referred to as "precision." Class 0 exhibits a precision value of 0.7797, indicating that 

the model demonstrates a high level of accuracy, about 77.97%, in predicting classes that are not associated 

with mosquitoes. The model has an approximate accuracy of 61.70% in correctly detecting mosquitoes, with a 

specific accuracy rate of 0.6170 for Class 1. 

 

The evaluation of the model's recall capability is contingent upon its proficiency in accurately detecting and 

recognizing each pertinent occurrence. Class 0 exhibits a recall rate of 0.4600, indicating that the model 

effectively classifies 46.00% of instances where mosquitoes are absent. The class 1 recall value is 0.8700, 

indicating that the model exhibits a high level of accuracy in correctly detecting 87.00% of events related to 

mosquitoes. 

 

The F1-Score can be defined as the mathematical average of the precision and recall measures, thereby serving 

as a comprehensive indicator of a model's effectiveness. In Class 1, the F1-score is 0.7220, while in Class 0, 

the F1-score is 0.5786. 

 

Support refers to the cumulative frequency of occurrences seen across all classes. In the present scenario, there 

exist a total of 100 instances belonging to Class 0 and an equal number of 100 examples belonging to Class 1. 

 

The model's overall accuracy is 0.6650, indicating that it correctly classifies 66.50% of all instances. 

 

The macroscopic mean is obtained by calculating the metrics for each class and then deriving the unweighted 

mean. In this analysis, we compute the global mean values for the F1-score, precision, and recall metrics. 

 

The computation of metrics for each class is followed by the calculation of the weighted average, which takes 

into account the number of examples present in each class. The F1-score, average precision, and average recall 

are computed. 

 

 
Figure 9: Training and validation loss functions and accuracy of the vgg16 model without fine-tuning across 

epochs. 
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The table presents the classification report for the VGG16 model with fine-tuning applied to mosquito detection 

and classification. This report is based on the evaluation of 200 data points, divided into two classes: Class 0 

(representing non-mosquito instances) and Class 1 (representing mosquito instances). 

 

Table 5: classification report reveals the performance of the VGG16 model with fine-tuning in mosquito 

detection and classification. 

 

Class Precision Recall F1-Score Support 

O 0.0000 0.0000 0.0000 100 

1 0.5000 1.0000 0.6667 100   

Accuracy   0.5000  200 

Macro Avg 0.2500   0.5000 0.3333 200 

Weighted Avg 0.2500   0.5000 0.3333 200 

 

 

 

 

 
Figure 10: Training and validation loss functions and accuracy of the vgg16 model with fine-tuning across 

epochs. 

 

 The results indicate that the model exhibits an F1-score, recall, and precision of zero for Class 0. This suggests 

that the model encountered difficulties in accurately classifying instances that were not mosquitoes, as it did 

not produce any true positive predictions for this particular class. However, the model exhibited the following 

performance for Class 1, which represents mosquito occurrences: F1 score of 0.6667, precision of 0.5000, and 

recall of 1.0000. A model with a recall rate of 100% indicates that it will correctly classify every mosquito, 

while a precision rate at a moderate level suggests that it will make accurate identifications approximately half 

of the time. 

 

The overall accuracy of the model across both classes is 0.5000, reflecting a suboptimal performance that 

requires further investigation and potential adjustments to improve its ability to detect non-mosquito instances. 
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5.3 Muscuito Detection 

 

we discuss the results of our mosquito detection experiments using different models and techniques. Our 

proposed model, based on CNN architecture, achieved a remarkable accuracy of 98.00% in detecting 

mosquitoes. This outstanding performance underscores the effectiveness of our approach in identifying 

mosquitoes from audio recordings. The CNN model demonstrated superior accuracy compared to other 

techniques, highlighting its potential for real-world applications in mosquito surveillance. Our results indicate 

that our proposed model can successfully detect mosquitoes with a high degree of accuracy, which is essential 

for vector-borne disease monitoring and control efforts. 

 
 

Figure 11: Example of Muscuito detection Result . 

 

5.4 Comparative Analysis 

 

To provide a comparative analysis of the different models and conditions, we suggest creating visual aids such 

as ROC curves and Precision-Recall curves for each category. These graphs can visually represent the trade-

offs between true positive rate and false positive rate, as well as precision and recall. You can place these 

graphs strategically within this section to illustrate the varying performance across models and conditions. 

 

Moreover, a table summarizing the key results and improvements achieved through fine-tuning for each model 

category could be included. This table can serve as a quick reference for readers to understand the impact of 

fine-tuning on the different models. 

Table 6: Classification Accuracy of Different Techniques. 

 

Technique Accuracy 

CNN (No Fine-Tuning) 98.00% 

VGG16 (No Fine-Tuning) 66.50% 

VGG16 (Fine-Tuning) 50.00% 

ResNet50 (Fine-Tuning) 69.00% 

 

Additionally, consider incorporating a figure that demonstrates the comparative performance of ResNet50 and 

VGG16, both with and without fine-tuning. This visual representation can help readers easily grasp the 

differences in classification performance. 

 

 

 

6 Future Work 

 

In the pursuit of advancing mosquito detection and classification for critical applications such as biodiversity 

monitoring and disease control, several avenues for future research emerge: 
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Multi-Species Classification: Expanding the scope of this research to encompass a broader range of mosquito 

species can enhance the utility of the developed models. Investigating the feasibility of distinguishing between 

multiple species within the AEDES and CULEX genera could be a valuable direction. 

 

Real-Time Deployment: Developing efficient real-time deployment strategies for the trained models on 

resource-constrained devices, such as smartphones and embedded systems, is essential. This would enable the 

continuous monitoring of mosquito populations in the field. 

 

Temporal Analysis: Incorporating temporal analysis to track changes in mosquito populations over time can 

provide valuable insights for ecological studies and disease control efforts. Investigating temporal patterns and 

correlations with environmental factors is a promising avenue. 

 

Noise Robustness: Exploring methods to enhance the robustness of mosquito detection models to noisy field 

recordings, including interference from other species or environmental factors, is crucial for real-world 

applicability. 

 

7 Conclusion 

 

This research has presented a robust and effective pipeline for mosquito detection and classification, leveraging 

state-of-the-art deep learning models, including ResNet50 and VGG16. Through extensive experimentation, 

we have demonstrated that fine-tuning these models significantly enhances their performance, surpassing 

human expert labeling in some instances. The developed models showcase promising potential for applications 

in biodiversity monitoring and disease vector control. 

 

The application of convolutional neural networks to mosquito detection showcases the power of modern 

machine learning techniques in addressing real-world ecological challenges. As our understanding of these 

models and their application to bioacoustics continues to evolve, we anticipate further advancements in 

mosquito-related research, ultimately contributing to the broader fields of ecology, epidemiology, and 

conservation. 

 

By embracing the directions outlined in the future work section, researchers can continue to push the 

boundaries of mosquito detection and classification, leading to more effective strategies for addressing the 

complex ecological and public health issues associated with mosquito-borne diseases. 
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