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 In current years, Generative Adversarial Networks (GANs) have grown into 
a popular and active research domain in artificial intelligence and machine 
learning. GANs provide an adequate data augmentation method, which helps 
improve model accuracy by generating realistic synthetic samples, especially 
for underrepresented classes. This paper reviews various techniques and 
methods used in training GANs, particularly focusing on their role in 
addressing dataset imbalance. The paper also discusses the implications of 
utilizing GANs for improving model generalization, mitigating bias, and 
reducing overfitting. This paper discusses the training methods for generative 
adversarial models, highlighting their significance. It overviews various 
model design strategies, algorithms, and recent approaches to enhance 
training. 
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1. INTRODUCTION  

Machine learning models face issues due to dataset instability, which leads to imbalances in dataset 
classes, negatively impacting performance and efficiency. This imbalance makes it difficult to extract 
meaningful insights from the data. AI-based classifiers face bias issues when dealing with imbalanced datasets, 
as they tend to focus more on the majority class due to the uneven distribution of training data. This makes it 
difficult to accurately identify rare minority samples, increasing the risk of misclassifying them as noise and 
incorrectly identifying them as valid data. [1] Various methods are proposed to address the imbalanced dataset, 
such as oversampling, a conventional data augmentation method employed to rectify dataset imbalance, especially 
in machine learning and statistical analysis. This includes balancing class distribution by creating more samples 
for the minority category in an imbalanced dataset, either by duplicating existing data or adding synthetic data 
until the number of samples in each class is balanced. The main aim of oversampling is to alleviate the bias 
towards the majority class, which can adversely impact the effectiveness of learning algorithms. [2] However, 
oversampling may result in overfitting, particularly when the same samples are duplicated multiple times. This 
causes the model to learn noise instead of the fundamental patterns in the data, culminating in inadequate 
generalization to novel data. Moreover, oversampling enlarges the dataset, perhaps resulting in elevated 
computational expenses regarding memory and processing duration. [3]  

Generative Adversarial Networks (GANs) are algorithms developed to create new data instances that 
closely match a specific training dataset. In 2014, a deep learning researcher and his colleagues introduced 
GANs, marking a significant advancement in artificial intelligence. Gui et al. (2020) comprehensively 
reviewed GANs, discussing their motivations, mathematical representation, and structural details. They also 
highlighted the connections among different GAN variants and their evolution. [4] This groundbreaking study 
presented a novel approach to addressing the challenges of unsupervised learning. GANs operate within a deep 
learning framework characterized by a unique adversarial process. Specifically, two neural networks are 
simultaneously trained in competition: the generator, which creates data instances, while the discriminator  
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evaluates these outputs. The discriminator provides critical feedback to the generator, indicating how 
well the generated instances mimic accurate data. Over time, the generator attempts to enhance its capability 
to create realistic data, and the discriminator becomes more skillful at differentiating between generated and 
actual instances. [5] 

The structure of these networks consists of multiple layers, each contributing to the resolution of the 
issue at hand. In the framework of GANs, these layers are crucial in generating realistic images. The 
discriminator network is accountable for differentiating between original and generated images, and the 
generator network aims to produce images that can fool the discriminator. This dynamic creates a competitive 
process that drives the networks to improve their performance over time. [6]  

Several studies have investigated various aspects of GANs, including their algorithms, theoretical 
foundations, and applications. A notable work by Sharma et al. (2014) delved into the taxonomy, variants, 
limitations, and application of GANs. Their study emphasized the growing demand for GAN-based utilizations 
in domains such as image-to-image translation, natural language processing (NLP), and architectural design. 
[7] Nayak et al. (2024) also systematically reviewed GANs, focusing on their challenges and future directions. 
They discussed GAN’s potential in high-dimensional data analysis and their applications in computer vision, 
cybersecurity, and medical imaging. [8] 

This paper reviews current research on GAN-based rebalancing methods, offering insights into their 
effectiveness and practical implementation. It comprehensively reviews methods used in training generative 
adversarial models to address dataset imbalance and improve machine learning and artificial intelligence 
performance. It details various methods and architectures developed for this purpose, emphasizing the 
theoretical foundations, algorithms, and practical applications of GANs in balancing datasets. The consistency 
of these methods proves their importance in training generative models. This work aims to enable those 
unfamiliar with the GAN model to grasp the model better by presenting and extensively discussing the existing 
methods for improving the GAN training process. This paper presents the different model design strategies and 
algorithms for the successful training of the GAN. Furthermore, the paper provides extensive information about 
the methods that come with multiple works to enhance the training of the generative adversarial network, and 
others proposed recently.  

This review paper is arranged as follows: Section 1 includes an introduction. Section 2, Background, 
overviews foundational concepts in machine learning, deep learning, artificial neural networks, and GANs. 
Section 3 describes the application area of GANs in different fields and related work. Section 4 is a discussion 
that focuses on the utility of GANs, particularly in applications where synthetic data generation can enhance 
dataset quality. Section 5 includes the conclusion of the review. 

 
2. BACKGROUND  

This section provides context and definitions relevant to the rest of the paper. 
 

2.1. Machine learning 
Machine learning (ML) is a unique computational approach that permits machines to produce 

meaningful outputs from experience without human data or interaction. It is a highly interdisciplinary domain 
that merges concepts from computer science, mathematics, statistics, and more. ML operates by learning from 
data, with the data's quality and size influencing the learned model's accuracy. ML is utilized in various 
application areas, such as finance, marketing, healthcare, and more. [9] Learning method in ML involves the 
following: 

 
2.1.1. Supervised learning 

Supervised learning is a kind of ML where models are trained on labeled datasets to make predictions. 
Input features relate to output labels. A dataset is utilized to train the model and adjust features or add more 
data for accuracy. A separate dataset is required to test the model, and the model is evaluated using real-life 
data. Supervised learning includes classification and regression techniques, with classification for discrete 
values and regression for continuous predictions. [10] Support vector machine (SVM), naive Bayes, k-nearest 
neighbors, decision trees, and random forests are algorithms for classification and regression. Decision trees 
divide data based on characteristics. Linear regression, support vector machine regressors, and random forests 
are regression algorithms. Supervised learning provides accurate outcomes on unseen data and can predict and 
assess classifications. However, it requires acquiring information and can overfit if not appropriately 
considered—strong assumptions about the model needed for supervised learning methods. [11] 

 
2.1.2. Unsupervised learning 

In unsupervised learning, the focus shifts from a specific prediction task to letting the model uncover 
structures and patterns inherent in the input data. The crucial difference lies in the absence of explicitly labeled 
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outputs, requiring the model to discern structure autonomously. As a result, unsupervised learning is often 
viewed as a more fundamental form of learning. [12] Cluster analysis is an unsupervised learning task that 
groups input data based on similarity or distance metrics. It requires a data point collection and a distance 
matrix. The goal is to make data within the same cluster comparable and dissimilar in different clusters, like 
dimensionality reduction. [13]  
 
2.1.3. Semi-supervised learning 

Another ML method is semi-supervised learning, which incorporates known and unknown data to 
optimize model performance and accuracy. This method is especially advantageous when labeled data is scarce 
and unlabeled data is plentiful. Some popular semi-supervised learning methods encompass co-training, self-
training, and multi-view learning. Self-training involves iteratively labeling unlabeled data points using a 
classifier trained on the initial labeled data. Co-training involves training two classifiers on distinct perspectives 
of the data and exchanging confidently labeled data points between them. Multi-view learning leverages 
multiple representations of the data to improve performance. [14] 

2.1.4. Reinforcement learning 
Reinforcement learning is a unique approach within the ML field where an agent is taught to make 

decisions through interaction with an environment to optimize overall rewards. Key components of 
reinforcement learning include agents, environments, actions, states, and rewards. The agent, responsible for 
decision-making, observes states and receives rewards, following a learning policy to exhibit specific 
behaviors. The environment, which includes the initial state, time, action, and state transition model, is also 
known as the Markov Decision Process. [15]  
 
2.2. DEEP LEARNING 

Deep learning (DL), a subset of ML, utilizes artificial neural networks to extract complex attributes 
from raw data. It learns to detect and differentiate hierarchical features at multiple processing levels, enabling 
classification or decision-making on task-relevant information. DL's strong performance across various 
domains and applications is due to its ability to learn attributes directly. [16]  

DL algorithms require a lot of data and computing power to optimize. Historically, building deep 
learning systems was impractical. Nevertheless, advancements in hardware and labeled datasets have made DL 
a promising tool in artificial intelligence, such as convolutional neural networks (CNNs) for image 
classification and computer vision and recurrent neural networks (RNNs) for NLP and speech recognition. [17]  

 
2.3. ARTIFICIAL NEURAL NETWORKS (ANNs) 

Artificial Neural Network (ANN) is integral to ML techniques in Artificial Intelligence, as they are 
engineered to emulate the human brain's information processing and learning capabilities. [18] A common 
variant of artificial neural networks is the feedforward neural network, characterized by interconnected nodes 
distributed across several layers. These networks are extensively employed in ML techniques within artificial 
intelligence for data analysis and processing. The ANN, inspired by the human brain, comprises interconnected 
nodes that process information. They are utilized in various domains, such as image identification, NLP, and 
predictive analytics. ANN architecture is shown in Figure 1. [19]  

 
Figure 1. An architecture of artificial neural network 
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2.4. GENERATIVE ADVERSARIAL NETWORKS (GANs) 
The Generative Adversarial Networks (GANs), presented by Goodfellow et al. (2014), serve as a 

novel option for Variational Autoencoders (VAE) to create substantial quantities of synthesized yet realistic 
data. [20] A framework for evaluating generative networks using an adversarial procedure, wherein two neural 
networks are trained: a generative network (G) that models the data distribution and a discriminative network 
(D) that determines the probability that a given instance is derived from the training data. The training 
methodology for G aims to optimize the likelihood of D's mistakes. This architecture relates to a minimax two-
player game. [21] The objective function [22] is given by: 

 
    (1) 

 
Where x represents real data, z denotes the latent vector, G(z) signifies the generated data, D(x) 

indicates the evaluation of real data by the discriminator, and D(G(z)) represents the evaluation of generated 
data by the discriminator. Typical varieties of GANs involve the following: 
 
2.4.1. Vanilla (GANs) 

The architecture of Vanilla GANs is straightforward, comprising two neural networks that work in an 
adversarial manner. The generator network produces data from an unknown noise pattern by learning to map 
from a latent space (Z). The aim is to create samples indistinguishable from real data, such as legitimate images. 
The second network, the discriminator (the classifier), takes inputs from real data and the generator's outputs, 
attempting to discern their origin. [23] The structure of Vanilla (GANs) is shown in Figure 2. [24]  

 
Figure 2. A structure of vanilla generative adversarial networks 

 
The GAN framework can be analogized to a contest between a forger (the generator) and a police 

officer (the discriminator) trying to identify counterfeit items. In this minimax game, while the generator 
generates realistic images, the discriminator strives to precisely distinguish between actual and generated 
images. Both networks function collaboratively; as the generator improves in producing convincing samples 
from random noise, the discriminator simultaneously enhances its ability to detect these fake samples. This 
interplay drives mutual improvement, resulting in the generation of outputs that closely resemble real data. 
[25]  

 
2.4.2.  Conditional (cGANs) 

The generator network initially introduced conditional generation in the seizure generation 
framework. This formulation created a discrete one-hot representation for class labels of real data, often 
utilizing networks like encoders or classifiers. cGANs gained significant recognition by incorporating label 
information within discriminator networks. Specifically, class labels are concatenated into the feature maps at 
various network layers. However, this concatenation is only feasible when using images from other GANs. 
Different architectures of GANs now employ discriminator networks using class label information, ultimately 
forming conditional GAN networks. The objective function is Equation 2. [26] The architecture of Conditional 
(cGANs) is shown in Figure 3. [27]  

 
 

           (2) 
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Where y: acts as a class label (conditional information), D(x|y): is the discriminator’s probability 
estimate that x is an original sample given the condition y, G(z|y): is the generator's output, conditioned on y, 
which attempts to produce samples resembling x given the label y.  

   
 

 
Figure 3. An architecture of conditional generative adversarial network 

 
2.4.3. Wasserstein (GANs) 

Wasserstein GANs (WGANs) represent a significant overhaul in GAN loss functions. The key 
theoretical advancement lies in aligning the generator objective with the earth mover's distance (Wasserstein 
distance) between the model distribution and the actual data distribution. In WGANs, the discriminator is 
replaced by a value critic, and the pointwise use of the critic's output is substituted with an integral. Weight 
clipping is employed to enforce the Lipschitz restriction on the critic. [28] WGANs are guided by the principle 
that increasing the divergence between the generator's distribution and actual data distribution amplifies the 
generator's loss. This approach stabilizes the training of GANs by utilizing the gradient of a 1-Lipschitz 
function as the critic. Unlike traditional GANs, which have a zero gradient almost everywhere, WGANs exhibit 
a non-vanishing gradient concerning the generator, provided that the critic and generator have sufficient 
capacity. [29]  

Additionally, WGANs replace the pointwise use of the critic's output with an integral to ensure more 
accurate feedback on the generated images. This method addresses the limitations of one-sided label 
smoothing, often leading to nondeterministic convergence due to reduced gradient flow through the 
discriminator. The term "Wasserstein" is derived from the earth mover distance, emphasizing the algorithm's 
foundation in measuring distribution divergence. [30]  

 
2.4.4. Deep convolutional (DCGANs) 

Deep Convolutional GANs (DCGANs) represent a more stable iteration of the original GANs. In 
DCGANs, the generator and the discriminator are deep convolutional networks trained with batch 
normalization to maintain a systematic structure in parameter space. This training process enhances stability 
and enables the generation of high-resolution sample data by reaching deeper network layers. [31]  

The optimal DCGAN architecture pools layers using strode and fractional stridden convolutions and 
batch normalizes both networks. Weights are set up with a zero-centered normal distribution and a standard 
deviation of 0.02. The generator uses the ReLU activation function for all layers except the output, and the 
discriminator uses the Leaky ReLU activation function for all layers. This results in high-quality, sharp images 
with a structured architecture. [32]  

 
2.4.5. Cycle generative adversarial networks (CycleGANs) 

CycleGAN consists of two GANs—GAN-A and GAN-B. GAN-A maps domain A to domain B, while 
GAN-B maps domain B to domain A. By training both GANs, CycleGAN learns the bidirectional mappings 
between the two domains. Adversarial loss and cycle-consistent loss are defined for both GANs, with the total 
loss being their sum. CycleGAN can be trained with unpaired data, unlike many GANs that require paired data. 
However, the non-entropy-based cycle-consistent loss can lead to noise reduction issues, potentially hindering 
proper one-way mapping. Despite these challenges, the continuous development of CycleGAN enables it to 
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handle high-dimensional data across multiple modes, reducing mode collapse and generating more realistic 
data. [33] CycleGANs architecture is shown in Figure 4. [34]  

 
 

Figure 4. An architecture of cycle generative adversarial networks 

 
Table 1. A comparison of GANs architecture, features, and application 

GANs type Architecture Key characteristic Application Limitation 

Vanilla GAN 

The basic GANs 
structure 
compromises two 
networks: a 
generator and a 
discriminator. 

Straightforward 
design uses 
random noise as 
input for the 
generator. 
 

used for 
generating 
images, text, and 
other data types 

Prone to mode 
collapse, it can 
suffer from 
instability 
issues. 

Conditional 
GAN (cGAN) 

Extends the Vanilla 
GAN by 
incorporating class 
labels in the training, 
enabling conditional 
generation. 

Adds conditional 
information (e.g., 
labels) to control 
output 
characteristics, 
enabling targeted 
data generation. 

Useful in 
scenarios where 
specific 
attributes or 
classes are 
desired in 
generated data. 

It requires 
labeled data; it 
may not 
generalize well 
to unseen 
classes. 

Wasserstein 
GAN 
(WGAN) 

This improves 
GANs' training 
stability by reducing 
the Wasserstein 
distance (earth 
mover's distance) 
between generated 
and real data 
distributions. 

Utilizes a “critic” 
instead of a 
discriminator; 
helps reduce 
mode collapse 
and makes 
training more 
stable. 

Applicable in 
various domains 
requiring high-
quality data 
generation. 

It can be 
computationally 
intensive and 
requires careful 
tuning of 
parameters. 

Deep 
Convolutional 
GAN 
(DCGAN) 

A variant using deep 
convolutional layers 
in the generator and 
discriminator to 
enhance image 
quality. 

Adds 
convolutional 
layers and batch 
normalization, 
avoids pooling, 
and achieves 
realistic and high-
resolution 
outputs. 

highly effective 
in generating 
high-resolution 
images 

It may introduce 
additional 
complexity in 
architectural 
design. 
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CycleGAN 

Consists of two 
GANs: GAN-A and 
GAN-B. GAN-A 
maps domain A to 
domain B, while 
GAN-B maps 
domain B to domain 
A. 

It uses cycle-
consistent loss to 
learn bi-
directional 
mappings 
between domains; 
it is suitable for 
tasks without 
paired datasets. 

Widely used for 
tasks such as 
style transfer 
and transforming 
images across 
different 
seasons. 

Complexity in 
maintaining 
cycle 
consistency may 
produce 
artifacts. 

 
 
3. AREA OF APPLICATION 

This section provides foundational information on GANs, which are essential for understanding their 
applications and variations and will be discussed later in the paper. 

A generative adversarial model was created to generate data from random noise. GAN has contributed 
significantly to various fields such as image production, genome data analysis, semantic image synthesis, high-
energy nuclear physics generation models, computer game level generation, and machine learning prototype 
exploration, such as unintentional learning. [35] Several models have been created based on GAN. cGAN 
introduces conditions to improve image quality, while WGAN addresses mode collapse and stabilizes learning 
by modifying the loss function. Inception GAN evaluates images classification performance and enhances 
image synthesis precision with AutoEncoder version and Variant AutoEncoders and their combination with 
GAN (VAE-GAN). And other studies have utilized GAN series models to reduce experimental errors and 
improve application contributions. [36]  

 
3.1. Computer vision 

In [37] proposed Pix2PixHD and Pix2Pix, which are GAN-based models for solar image translation 
to translate solar magnetograms into UV images at high resolution. The Pix2PixHD performs better in 
capturing fine details and generating high-resolution solar images, with Pearson Correlation Coefficients of 
0.99 for Pix2PixHD and 0.962 for Pix2Pix. Pix2PixHD is highly effective for solar image translation, 
outperforming the previous model's accuracy. The study employs a conditional GAN architecture designed for 
image-to-image translation tasks, specifically the Pix2Pix model. GANs methodology for high-resolution solar 
images has limitations like limited data range, manual data cleaning, model complexity, and training instability. 
However, it presents significant advancements in solar image generation, and continuous improvement in data 
handling, model training, evaluation, and applicability is crucial for future developments. 

In [38] BalaGAN is a technique that improves cross-modal image translation by translating images 
between imbalanced domains and decomposing richer domains into multiple modes. It uses contrastive 
learning, modality identification, and a robust training framework to enhance translation quality across 
imbalanced domains, focusing on latent modes and structured training. This method has been successfully 
applied in highly imbalanced domains. Fréchet Inception Distance (FID) is a widely utilized metric for 
assessing the quality of created images, comparing the feature distributions of original and created images in 
the Inception feature space. Lower FID scores indicate higher quality and realism in the generated outputs. 
However, expanding the approach to broader tasks like object detection and classification could enhance its 
utility in computer vision. 

In [39] the mGANprior framework is a significant advancement in GAN-based image processing, 
utilizing multiple latent codes to generate feature maps in intermediate layers. This approach improves image 
reconstruction quality for colorization, super-resolution, and inpainting tasks. The paper utilizes a Peak Signal-
To-Noise Ratio (PSTNR) metric to measure the pixel-level similarity between the original and reconstructed 
images. Higher PSNR demonstrates better reconstruction quality. The mGANprior framework addresses the 
limitations of previous methods by utilizing pre-trained GANs for diverse tasks without retraining. However, 
challenges such as computational complexity, reliance on pre-trained models, and task-specific customization 
need further exploration. Future work could focus on improving scalability, expanding to diverse datasets, and 
automating task-specific adaptations to enhance its practical applicability. 
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In [40] the hybrid model uses DCGAN for image generation and CycleGAN for unpaired image-to-
image translation. DCGAN works well with paired training data, while CycleGAN excels when no pairs are 
present. This technique prevents overfitting and accelerates convergence by normalizing the output of each 
layer, ensuring smoother image transformation between domains. Cycle-Consistency Loss metric employed to 
ensures that transformed images can return to their original domain, reducing artifacts and improving output 
reliability. The combination of DCGAN and CycleGAN introduces additional computational overhead. The 
requirement for high-powered GPUs and extended training periods may limit practical adoption, and 
incorporating metrics like FID or PSNR would enable more objective comparisons with other cutting-edge 
models. Future research should address scalability, efficiency, and robustness to enhance its practicality and 
generalizability across domains. 

In [41] the method tackles the issue of mode collapse in GANs, where the generator produces a limited 
range of outputs. Self-Conditioned GANs address this by clustering the discriminator's feature space to identify 
data modes, which act as implicit classes automatically. This allows the generator to generate more diverse 
images by covering broader possibilities. Training alternates between clustering and refining the GAN model, 
evaluated using metrics like FID for image quality, Inception Score (IS) for quality and diversity, Reverse 
Kullback-Leibler (KL) divergence for distribution matching, and Learned Perceptual Image Patch Similarity 
(LPIPS) for perceptual similarity from original to reconstructed images. Despite improving diversity, the 
method falls short of the quality and diversity achieved by supervised class-conditional GANs that rely on 
labeled data. 

In [42] design a Balancing GAN Gradient Penalty (BAGAN-GP), an enhancement of BAGAN, 
designed to produce minority-class images in imbalanced datasets. The original BAGAN used an autoencoder 
to initialize GAN training by giving the generator common knowledge of all classes. BAGAN-GP adds a 
gradient penalty to the GAN training process, which improves stability and ensures better image generation for 
minority classes (such as rare medical images). The gradient penalty helps ensure the generated image 
distribution is smooth and realistic. The primary metric to assess the model is FID, which measures the quality 
of produced images. Lower FID scores demonstrate better quality of target samples. Additionally, while 
BAGAN-GP shows improved stability with less hyperparameter tuning than the original model, there may be 
room for further optimization and enhancement of the model architecture and training process to handle more 
complex datasets. 

 
3.2. Natural language processing (NLP) 

Generative Pre-trained Transformers (GPT) is a generative model of NLP. It employs attention 
mechanisms to capture the dependencies of words in a passage. One of the intriguing capabilities of the model 
is its ability to complete sentences and even paragraphs in various styles. The autoencoders come in different 
forms, such as Variational Autoencoder, Denoising Autoencoder, and Contractive Autoencoder, capturing a 
latent space from the training data. They compromise an encoder and a decoder, which map the original data 
to a latent space and then map the latent space back to the original data, respectively. The Diffusion Models 
put randomness in the magnification of perceptual inputs and the blurring process of the compressed image, 
making the final prediction. [43]  

In [44] the system focuses on two GAN models, catGAN and sentiGAN, to generate synthetic text to 
balance datasets; the paper addresses the issue of dataset imbalance in sentiment analysis within the educational 
domain. Experimental results indicate significant improvements in model performance when trained on 
synthetic balanced datasets compared to the original imbalanced datasets. Specifically, accuracy and F1-scores 
were enhanced, demonstrating the effectiveness of the synthetic data approach. However, The educational 
domain lacks structured, manually-labeled datasets, leading to data imbalance issues. Most research relies on 
private datasets, and models often fail on real-world imbalanced datasets. Traditional text generation 
approaches also struggle with long sentence dependencies. Future research must create benchmark datasets to 
properly test and compare model performance for sentiment classification on student feedback. 

In [45] uses a combination of VAE-GAN and reinforcement learning, fine-tuning in latent space with 
GPT-2 for single-word generation. To address text generation, the work combines pre-trained models (VAE, 
GPT-2) with GANs. Introduces reinforcement learning fine-tuning to balance quality and diversity. The paper 
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achieves cutting-edge performance in text generation benchmarks, outperforming standard GANs in high-level 
language modeling. Reinforcement learning fine-tuning yields significant quality improvements in generated 
text. Two primary metrics are used to evaluate text generation: the Bilingual Evaluation Understudy (BLEU) 
to measure precision-oriented overlap between generated text and ground truth and the recall-oriented 
Understudy for Gisting Evaluation (ROUGE) to measure recall-oriented overlap between generated text and 
ground truth. However, discriminators are specialized for the current generator distribution, leading to 
overestimating sequences outside that distribution and high variance in importance sampling estimators. 

In [46] the paper explores GANs for low-resource language modeling. It is a new ML technology that 
can aid low-resource language preservation. GANs aim to model graphotactics and morphological inflection. 
The study utilized two main metrics, including accuracy, where the models trained on GAN-augmented data 
achieved less than 18% accuracy, and in most cases (10 out of 13 languages) had less than 10% accuracy. 
Models trained on GAN data performed only one-fifth as accurately as those trained on unaugmented data. 
Levenshtein Distance metric was utilized to measure the difference between predicted and actual inflections. 
While following similar patterns to accuracy measurements, this metric occasionally favored models trained 
on trigram-augmented data. However, models quickly exhausted their learning potential, and GAN models 
performed poorly, with no GAN-augmented model exceeding 18% accuracy. The study also highlighted the 
limitations of training on small datasets. 

In [47] Bidirectional Encoder Representations from Transformers GAN (GAN-BERT) is designed to 
improve robustness in poor training conditions. Adversarial training enables semi-supervised learning for 
Transformer architectures. Fine-tuning with a few labeled examples leads to unstable models. It enhances 
accuracy in sentence classification tasks with few examples. GAN-BERT shows systematic improvement over 
BERT in all tested conditions. Although GAN-BERT shows improvements in scenarios with limited labeled 
data, the performance may still be less stable in tasks with many categories, where the classification becomes 
more complex. 

 
3.3. Intrusion detection system (IDS) 

Computer network security measures are essential to prevent unauthorized access, breaches, and cyber 
threats. Both firewalls and intrusion detection systems (IDS) are essential in ensuring network security. While 
firewalls filter and analyze network packets, they have limitations in analyzing packet content. On the other 
hand, IDS scrutinizes packet content to identify potential security issues. However, traditional IDS encounter 
challenges related to performance and accuracy, necessitating ongoing research and development. On the other 
hand, modern IDS leverages advanced technologies to enhance efficiency and reliability. [48]  

The Internet of Things (IoT) is a network of interconnected devices communicating without human 
intervention. Sensors detect and transmit data to a central hub, enhancing human convenience by exchanging 
information through smart devices. [49]  

Detecting unauthorized access and malicious behavior presents a primary obstacle in cybersecurity. 
Recent research has been concentrated on the application of artificial intelligence in Network Intrusion 
Detection Systems (NIDS). AI-based NIDS has exhibited exceptional effectiveness. Initially, efforts were 
directed toward integrating conventional ML techniques such as SVM and decision trees into existing intrusion 
detection systems. More recently, attention has shifted to incorporating deep learning techniques. [50]  

In [51] the system uses GANs to produce synthetic data to train ML models in NIDS. The GAN's 
training termination criterion is based on the alignment of boxplot distributions between the synthetic and real 
data. The GAN's performance is measured through adversarial loss during training, which involves the 
discriminator's ability to differentiate between original and artificial data and the generator’s ability to create 
artificial data that the discriminator cannot differentiate from original data. The system has undergone testing 
on various datasets, including UNSW-NB15 and NSL-KDD datasets. It does propose a synthetic data 
generation method. It uses GANs to train NIDS, reducing reliance on real-world data and improving flexibility. 
It obtained an accuracy of 100% on the BoT-IoT dataset and an accuracy of 90% on the UNSW-NB15 dataset. 
Future work must improve generalizability across datasets, handle unseen threats, and reduce the computational 
overhead of GAN training. 
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In [52] the model utilizes One Class GAN (ocGAN) for data augmentation, considering the class 
imbalance in IoT networks, which aids in creating a more uniform distribution of normal and malicious profiles. 
The model is trained on algorithms for finding outliers that use feedforward networks and tested on different 
datasets. The Binary Class GAN (bcGAN) model is all about adding to data by making fake data to improve 
the training dataset and find anomalies better. This study improves the accuracy, precision, and F1-score of 
anomaly detection, getting better results than traditional models across several datasets. The cGAN framework 
proficiently mitigates data imbalance in IoT networks and improves detection precision. However, the ocGAN 
and bcGAN models showed low detection rates in less than 1000 samples but improved significantly with more 
samples. Concerns about generalization and effectiveness in diverse IoT environments remain unresolved. 

In [53] the study uses GAN-based synthetic data generation and anomaly detection models to improve 
network security and address class imbalance in NIDS datasets. It achieves higher accuracy and reduces false 
alarm rates in the NSL-KDD and UNSW-NB15 datasets, enhancing detection performance for rare attacks and 
improving security in enterprise networks and critical infrastructure systems. However, the study's focus on 
familiar attack types may not adequately address emerging or sophisticated vectors, potentially leaving 
networks vulnerable to novel threats. 

In [54] the CWVAEGAN-1DCNN model is a proposed method for generating minority class samples 
and solving class imbalance in NIDS datasets. It balances training data using GAN-generated samples and 
classifies attacks using 1DCNN. The model outperforms other class-balancing methods and improves detection 
accuracy, making it suitable for environments with significant class imbalance, such as healthcare systems or 
industrial IoT applications. However, there is a need for improvement in applying CWVAEGAN to complex 
datasets and developing automated parameter-tuning methods. 

In [55] an IDS was developed using cGAN for unsupervised learning in Wireless Sensor Network 
(WSN) and integrated XGBoost for fast classification. Introduced a cGAN-based IDS model that reduces the 
need for extra sensors and generates synthetic data for more efficient intrusion detection. Reduced the false 
alarm rate by 1.827% and improved the accuracy of intrusion detection in WSN environments. The CGAN 
effectively reduces the need for additional hardware, improving the efficiency and accuracy of IDS in WSN. 
The study offers a cost-effective solution for securing WSNs in agriculture, military surveillance, and 
environmental monitoring. However, the CGAN model parameters were not extensively varied enough to study 
their full impact on performance, potentially limiting the optimization of the IDS. Optimizing hyperparameters 
and studying their effects could improve model performance. 

 
Table 2. Summary of related work 

study 
Improved performance 

of GANs model Benefit Challenges 
 

Discussion 

[39] mGANprior uses multi-
code latent spaces to 
improve reconstruction 
quality and adaptability 
across tasks like 
colorization and 
inpainting. 

Excels in 
inpainting, super-
resolution, and 
colorization tasks 

Heavy reliance on 
pre-trained 
models; 
computational 
complexity 

Valuable for creative and 
restoration tasks, the 
reliance on pre-trained 
models and high 
computational costs limit 
accessibility in real-time 
applications. 

[42] BAGAN-GP uses 
gradient penalty to 
ensure stable training and 
effective generation of 
minority class data. 

Balances datasets, 
enhances training 
stability and 
reduces 
overfitting. 

Requires careful 
tuning; 
generalization 
across datasets is 
limited. 

It is effective for 
addressing class 
imbalance in medical and 
security datasets. 
However, scaling to 
highly diverse or dynamic 
datasets requires further 
research. 
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[44] SentiGAN employs 
multiple generators, each 
focusing on creating 
synthetic samples for a 
specific sentiment class. 
catGAN employs an 
entropy-based loss 
function to enhance the 
discriminator's ability to 
produce high-confidence 
predictions. 

Addresses dataset 
imbalance and 
improves 
classification 
accuracy in 
sentiment analysis. 

Struggles with 
long-term 
dependencies; 
relies on structured 
labeled datasets. 

Helpful in improving 
sentiment classification; 
lack of benchmark 
datasets and poor 
performance on real-
world imbalanced 
datasets remain 
limitations. 

[45] Combines reinforcement 
learning and adversarial 
learning to enhance 
sequence generation 
performance. 

Generates diverse 
and high-quality 
text; balances 
quality and 
diversity. 

Overestimation of 
sequences outside 
current generator 
distribution; high 
variance in 
estimators. 

It is effective in NLP 
tasks requiring diversity 
and coherence in text 
generation; optimizing 
performance in low-
resource settings remains 
challenging. 

[52] Combine ocGAN and 
bcGAN in a hybrid 
approach, Use 
regularization techniques 
(e.g., dropout, batch 
normalization) to reduce 
overfitting and improve 
the model’s ability to 
generalize better across 
diverse IoT 
environments. 

Reduces false 
alarm rates while 
improving 
detection 
accuracy. 

Limited variation 
in model 
parameters; 
difficulty scaling 
to new scenarios. 

Provides cost-effective 
security solutions; 
parameter tuning and 
scaling to diverse 
environments need 
improvement for broader 
applicability. 

[54] WGAN uses Wasserstein 
loss to stabilize training 
and reduce mode 
collapse, improving the 
quality of generated 
images. 

Generates realistic 
minority class 
samples and 
improves 
classification 
performance. 

Needs 
optimization for 
complex datasets; 
computationally 
intensive. 

Suitable for industries 
like healthcare and IoT 
applications; applying 
CWVAEGAN to more 
complex datasets is 
necessary to expand its 
utility. 

 
 

4. DISCUSSION 
Generative Adversarial Networks are optimally utilized in scenarios where the creation of synthetic 

data can significantly enhance the quality of existing datasets, particularly in cases of data imbalance or 
scarcity.  

1. Minority Class Augmentation and Imbalanced Data: GANs are highly useful for applications 
requiring class balancing in datasets. For example, in UV imaging or IDS, GANs like cGAN 
and BAGAN models make realistic samples that balance the dataset across all classes. This 
is called Detail-Specific Data Generation. GANs such as Pix2Pix and Pix2PixHD are 
adequate for tasks needing high-resolution data outputs. Pix2PixHD for solar imaging and 
translating magnetograms into UV images requires preserving fine details. This also applies 
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to applications like satellite imagery, where high resolution and accurate image translation 
are essential. 

2. Low-resource languages and balance datasets for sentiment analysis and text classification: 
SentiGAN and catGAN aim to enhance sentiment analysis by creating artificial samples to 
address imbalanced sentiment classes, thus improving performance on datasets with uneven 
distribution. GAN-BERT integrates adversarial training with BERT, enabling semi-
supervised learning in situations with limited data. This improves text classification in 
resource-limited scenarios, ensuring resilience across various text samples. 

3. Generating synthetic data for intrusion detection: cGANs improve detection by creating 
labeled fake data, balancing unequal classes in security datasets, and making the models 
more accurate. 

SYN-GAN and CWVAEGAN-1DCNN make samples to find rare intrusions in IoT environments. 
This improves IDS accuracy and adaptability by reducing the need to collect real-world data. 

 
Table 3. Summary of training approaches applied to GANs 

Training 
Method 

Purpose Applicable GAN Types Benefits Challenges 

Wasserstein 
Distance 

Stabilizes training by 
measuring 
distribution 
differences. 

WGAN, WGAN-GP 

Reduces mode 
collapse and 
provides 
consistent 
convergence. 

Requires 
weight 
clipping and 
careful 
tuning. 

Batch 
Normalization 

Normalizes inputs 
across layers to 
prevent training 
issues. 

DCGAN, CycleGAN 

It improves image 
quality and 
supports deeper 
network layers. 

It can create 
artifacts if 
not applied 
consistently. 

Gradient 
Penalty 

Enforces smooth 
training by limiting 
gradient magnitudes. 

WGAN-GP, 
BAGAN-GP 

Increases stability 
and enhances 
minority-class data 
generation. 

The higher 
computation
al cost adds 
complexity. 

Feature 
Matching 

Ensures synthetic 
data resembles real 
data distributions. 

cGAN 

Reduces 
overfitting and 
enhances realism 
in generated data. 

Slower 
convergence 
requires 
parameter 
adjustments. 

 
Notwithstanding its benefits, GANs have drawbacks like: 

1. Mode Collapse: GANs occasionally produce a small number of outputs while ignoring the 
dataset's diversity. Methods such as Wasserstein GANs and self-conditioned GANs have 
been suggested to tackle this problem. 

2. Training Instability: For best results, GANs need to be fine-tuned and can be sensitive to 
hyperparameter selection. The WGAN and DCGAN architectures address these stability 
issues in part. 

3. Demand for Computation: The substantial computational resources needed to train GANs, 
particularly for high-resolution data, may not be practical for all applications.  

 
5. CONCLUSION  

To improve model generalization, address data imbalance, decrease overfitting, and augment data, 
GANs have proven to be an effective tool. GANs reduce bias and optimize ML models' accuracy, fairness, and 
resilience by generating synthetic data. Although stability, computational efficiency, and interpretability issues 
still exist, GAN utilizations in computer vision, natural language processing, and intrusion detection 
demonstrate their impact and versatility. GANs have the potential to revolutionize a variety of domains with 
further development, especially those where data quantity and quality are crucial. Each work offers distinct 
insights into addressing prevalent issues associated with GANs, including mode collapse, image quality in 
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imbalanced domains, and efficient image translation without paired data. By resolving these challenges, these 
GAN models facilitate progress in high-resolution imaging, unpaired translation, and broader applications, 
including healthcare, cybersecurity, and natural language processing. This dialogue invites further 
investigation of these techniques and their possible applications in other data-intensive fields. 
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