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 High-Utility Itemset Mining (HUIM) is a significant task in data mining, 
especially in situations with fluctuating negative profits, such as retail 
discounts and healthcare cost control. Despite the fact that existing 
algorithms such as EHMIN and EMHUN for mining under hybrid datasets 
encounter issues such as scalability, execution time, and memory efficiency. 
To achieve this purpose, this study develops a Dynamic Utility Partitioning 
(DUP) algorithm that features dynamic item partitioning, Redefined Utility 
Upper Bound (RUUB) pruning, and an adaptive recursive search strategy. 
Thus, DUP effectively boosts pruning efficiency and cuts down the 
computational cost, rendering itself applicable on large-scale datasets. 
Experimental results on benchmark datasets show that DUP significantly 
outperforms the state-of-the-art algorithms in execution time by up to 25%, 
memory usage by nearly 20% compared to EHMIN and EMHUN across 
benchmark datasets, and candidate reduction. The proposed algorithm can 
be advantageous in the applications such as retail analytics, healthcare 
optimization, and supply chain management, where hybrid and unstable 
utilities are common. 
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1. INTRODUCTION  

High-Utility Itemset Mining (HUIM) is an important avenue in data mining as it is an extension of 
Frequent Itemset Mining (FIM) [1] , with the addition of utility measures of items such as profit, cost, or 
relevance. FIM only takes into account the frequency of item occurrences while HUIM allows finding the 
itemsets that have a high contribution on the overall utility of a data set. These dimension reductions thus 
allow for a more nuanced understanding of inter-event and intra-event waiting times, which is crucial in the 
context of many practical scenarios in which bursts are born and die at unknown intervals, making HUIM a 
much more valuable tool for various applications from the retail to e-commerce to healthcare and supply 
chain management. For instance, in retail environments, HUIM can help determine the best combination of 
products to maximize revenue, and in healthcare, HUIM can reveal the best plan of attack to improve patient 
outcomes [2]. 

There are a number of existing HUIM algorithms including the Two-Phase Method [3], HUI-Miner 
[4], and UP-Growth [5] which focus on specific aspects of utility mining. Almost all of them depend on 
TWU-based strategies to narrow down the search space and keep computational complexity low [6]. But 
these methods are mainly designed for cases with static positive utilities and do not consider the new 
challenges caused by the negative or fluctuating utilities. For example, EHMIN [7], EMHUN [8]. EHMIN 
revisited the notion of utility metrics with negative values, whereas EMHUN took these concepts into hybrid 
datasets with positive and negative utilities. These algorithms have demonstrated potential, but they currently 
suffer from major issues related to scalability, computational duration and memory efficiency when 
addressing the larger or more intricate datasets. Such problems involving mining high-utility itemsets from 
databases with volatile negative profits warrant more resilient and effective solutions. The introduction of 



IJICI  ISSN: 2791-2868 r 
 

 A new Dynamic Utility Partitioning Algorithm for High-Utility Itemset Mining in Databases with Unstable 
Negative Profits (Arkan A. Ghaib) 

173 

hybrid utilities makes pruning and candidate generation more challenging, as they produce a lot of 
computational overhead. Moreover, existing methods are not well-suited to handle dynamic scenarios 
because of their static utility thresholds and pruning mechanisms. Addressing these bottlenecks requires 
novel strategies that can adaptively respond to utility fluctuations while maintaining computational 
efficiency. 

We propose a new approach called Dynamic Utility Partitioning (DUP) herewith in this work to 
advance the state of the art by avoiding these difficulties coming from finding high-utility itemsets in 
sensitive negative profit environments. The DUP algorithm performs dynamic partitioning of items using 
their utility characteristics into positive, negative, and hybrid items. That said, enabling dynamic partitioning 
gives you precise utility computation and more prunes. More specifically, the algorithm utilizes an advanced 
utility pruning method based on Redefined Utility Upper Bounds (RUUB), leading to a tighter estimation of 
utility values and better discarding of unpromising candidates. The proposed DUP algorithm is an extension 
of the principles presented in EHMIN and EMHUN, which attempts to overcome their shortcomings. 
Leveraging these novel techniques like dynamic partitioning, RUUB-based pruning, and adaptive search 
strategy, DUP demonstrates substantial benefits in execution time, memory consumption and candidate 
elimination. These advances render the algorithm especially well-suited for large-scale and complex 
transactional datasets, allowing its use across a diverse array of areas. 

This paper makes the following contributions: 
• Dynamic Item Partition: A mechanism for classifying items into positive, negative and hybrid 

utilities to optimally deal with volatile profits. 
• Redefined Utility Upper Bound (RUUB): A new pruning rule with improved utility bounds yielding 

an order of magnitude less unpromising candidates. 
• Adaptive Recursive Search: A method used to segment and organize the data in an efficient way, 

optimizing performance and reducing the amount of time required to classify future unseen objects. 
• Comprehensive Evaluation: We run extensive experiments on benchmark datasets, showing that 

DUP outperforms state-of-the-art algorithms in terms of execution time, memory cost, and 
candidate reduction. 

 
2. RELATED WORK 
 

High-Utility Itemset Mining (HUIM) is a field that has been continuously evolving over the last two 
decades in order to tackle the problem of mining patterns with high utility. This section discusses two main 
avenues of related work: high-utility itemset mining and mining of high-utility itemsets with negative 
profits. It also addresses important algorithms and methodologies consisting of works not included in 
previous work, their developments, and limitations. 

 
2.1 High-Utility Itemset Mining 

HUIM (High-Utility Itemset Mining): It is extension of traditional Frequent Itemset Mining (FIM) 
which takes into calculation not only frequency of itemset but the utility of itemset which can be profit, 
value or utility for that respective domain. In contrast to MRFP methods which use support thresholds to 
find frequent itemsets, HUIM uses utility-based metrics to help discover more meaningful patterns [5], [9]. 
The Two-Phase Algorithm [3], which is one of the earliest methods in HUIM, introduced a Transaction 
Weighted Utility (TWU) metric. TWU is used as an upper bound to eliminate un-promising itemsets in early 
mining phases. This was effective in reducing the search space, but came at a high computational cost due to 
the number of candidates generated. To address the candidate generation limitations, HUI-Miner [10] 
proposed a utility-list structure to not generate candidate at all. Utility-list structure stores the itemset utilities 
and support values and can directly compute the utility without having to go back to the database. Compared 
with Two-Phase algorithms, the computational time and memory consumption of HUI-Miner were largely 
reduced. UP-Growth [11] was another critical milestone in HUIM; it used a tree-like structure for transaction 
management and had pruning techniques including Discarding Local Unpromising Items (DLU) and 
Decreasing Local Node Utilities (DLN). UP-Growth+, its enhanced variant, introduced further optimizations 
in utility-tree structure specifically aimed at improving scalability and performance with large datasets [12]. 
The EFIM (Efficient High-Utility Mining) [13] algorithm iterated a utility upper-bound of an interesting 
search space using a depth-first search strategy, which offered improvements for the performance of high-
dimensional datasets. This allowed EFIM to avoid the costly generation of itemsets unpromising in their 
utility whilst still ensuring that the utility computes correctly [14]. Other notable advancements involved 
HUIMiner++ which proposed parallelization techniques to increase scaling in the distributed environment 
[15] and FastHUM that accelerated the algorithm using the GPU to efficiently process massive datasets. 
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2.2 Mining High-Utility Itemsets with Negative Profits 

The negative utilities introduced further difficulty in HUIM, since classical pruning methods such as 
TWU usually don’t suffuse tight upper bounds if negative values are included. This resulted into better-
suited algorithms for negative and hybrid utilities. FHN (Fixed High Negative Mining) [2] was one of the 
first algorithms for tackling positive and negative utilities. Zhang et al. [16] did a recent study on high-utility 
sequence pattern mining, where they also discussed the techniques, challenges and applications. But in 
contrast to sequence mining, we are dealing with high-utility item pairs embedded in transactionnal databases 
with dynamic negative profits, which is sold in this paper by the DUP model.   Another framework called 
EHIN (Efficient Hybrid Itemset Mining) [17]extended FHN by adding hybrid utilities into account, where it 
was capable of finding positive and negative values in one dataset. EHIN achieved improved pruning 
efficiency yet still suffered from scale issues for large datasets [18]. Zhang et al. [19] has proposed the 
HEPM algorithm to enhance the performance of HUPM with the help of advanced pruning techniques. DUP, 
however, does not make any positive utility assumption, dealing instead with the instability of negative 
profits through dynamic partitioning and RUUB-based pruning. The EHMIN Algorithm [7] proposed 
Redefined Transaction Utility (RTU) and Transaction Weight Utility (RTWU) to tackle the overestimation 
that can result from negative profits. With these definitions, it achieved more accurate pruning and 
outperformed its predecessors. Based on EHMIN, EMHUN (Enhanced Mining of High-Utility Negative 
Itemsets) [8] proposed a framework for mining high-utility itemsets from databases with hybrid utilities 
containing both positive and negative profits. In addition, EMHUN incorporated state-of-art pruning 
mechanisms to partition datasets with variable utility scores, leveraging Redefined Utility Upper Bounds 
(RUUB). Although EMHUN overcame some limitations, it was designed without focusing on large-scale 
transactional database with a majority of negative utilities. In addition, Han et al. [20] introduced algorithm 
to discover negative high utility patterns from data in change. Their method generalizes research on negative 
utility itemsets by concentrating on closed pattern representations in order to overcome redundancy and 
enhance interpretability. EMHUN primarily focuses on dynamic updates in hybrid utilities, but do not 
consider hybrid utilities. ’s papers, we motivated the DUP algorithm as a natural approach for processing 
negative utilities in evolving databases. GHUI-Miner (Generalized High-Utility Itemset Miner) [21] is 
Generalized framework for high utility item set mining in static and dynamic utility Instances. It uses a 
hierarchy-pruning strategy which effectively decreases the computational costs for negative and hybrid 
utilities, but such approach heavily depends on preprocessing and we cannot expect this to be used for self-
adaptive and real time purposes when the scale becomes large. In comparison, the presented DUP algorithm 
does not rely on massive preprocessing and adopts dynamic item partitioning, RUUB-based pruning for 
insitu reductions of candidate generation and scalability. Accordingly, although GHUI-Miner gives a 
common framework, DUP provides a more effective and adaptive way for negative profitting and dynamic 
environments. 
 
 
3. PROPOSED METHODOLOGY: DYNAMIC UTILITY PARTITIONING (DUP) 
 

Dynamic Utility Partitioning (DUP) based Mining of High Exodus Itemsets from Transactional 
Databases with Unstable Negative Profits Hybrid datasets with positive and negative utilities, as well as 
varying profit values, pose major challenges for established HUIM approaches. Novel key innovations are 
incorporated within DUP, such as dynamic item partitioning, improved utility pruning, and a versatile 
recursive search strategy enhancing efficiency and scalability of the new algorithm.   Figure 1 shows the 
flowchart illustrates the sequential steps of the DUP algorithm, including dynamic partitioning, RUUB 
pruning, adaptive recursive search, utility computation, and output generation. 
 
3.1 Problem Definition 

   High-utility itemset mining is the process of finding all itemsets X in a transactional database D 
that fulfill the condition u(X) ≥ minU, where:  

u(X) is the utility of itemset X. 
·minU is the minimum threshold of utility defined by the user. 
The utility of an itemset X in a transaction Tk is computed as: 

u(X,	𝑇!)=∑ u(i, T!)	"∈$  
Where u(i,Tk) is the utility of item i in transaction Tk. 
Total utility of X in D database is: 

u(X)=	∑ u(X, T!)	%&∈'  
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Negative utilities in D make this process challenging, as most existing pruning techniques do not 
provide accurate utility upper bounds for itemsets. The Reactive Utility Partitioning approach developed in 
this project, called DUP, solves this by redefining utility metrics and dynamically partitioning items into 
categories based on their utility characteristics. 
 

 

Figure 1: Flowchart of the proposed Dynamic Utility Partitioning (DUP) algorithm 
 
 
3.2 Key Innovations 
3.2.1 Dynamic Partitioning of Items 

Specifically, one of the major difficulties on mining databases with volatile the negative revenue is 
to handle the hybrid utility of items. DUP takes the first approach and partitions items into 3 distinct 
categories dynamically on the first scan of the database: 

Positive-Utility Item (ρ): Items that always have positive utilities for all transactions. 
Negative-Utility Items (η): Items with negative utilities in all transactions. 
Items that combine both positive and negative utilities in the transactions. 
Table 1 presents a simple example of dynamic partitioning of Items in a Transactional Database: 

Table 1: example of dynamic partitioning 
 
 

 
 
 
 
 

 
After scanning the database, the items are partitioned as follows: 
·         Positive-Utility Items (ρ): {A, C}, Negative-Utility Items (η): {B, D}, Hybrid Items (δ): {} 

3.2.2 Redefined Utility Metrics 
DUP develops a new efficient upper bound, Redefined Utility Upper Bound (RUUBو that 

efficiently makes a trade-off between Redefined Transaction Utility (RTU) and Remaining Utility (RU) of an 
itemset, thus enhancing the pruning of the dimension. This is a much tighter upper bound than covered by 
traditional metric, thus allows RUUB which enables us to prune more than MN-ELPrUN, unpromising 
itemset more aggressively. 

The redefined transaction utility (RTU) for a transaction Tk is defined as: 
RTU(𝑇!)=∑ u(i, T!)"∈%!,)(",%!),-  

Transaction Items Utilities 

T1 {A, B, C} A: 5, B: -2, C: 3 

T2 {A, C, D} A: 4, C: 6, D: -1 

T3 {B, C, D} B: 3, C: -4, D: 5 
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RUX(Tk) for itemset X in transaction Tk is defined as: 
RU(X, 𝑇!)=∑ u(i, 𝑇!)"∈%&,"∉$,)(",%&),-  

From there the Redefined Utility Upper Bound (RUUB) for an itemset X is computed as: 
RUUB(X) = ∑ (RTU(𝑇!) 	 + 	RU(X, 𝑇!))%&⊇$  

Example of RUUB Calculation: 
Now for the itemset X={A,C}X={A,C} of the above database: 
· RTU(T1)=5+3=8 
· RTU(T2)=4+6=10 
· RU(X,T1)=0 (all remaining items have non-posited utility) 
· RU(X,T2)=0 (removal of positive-utility items) 
· RUUB(X)=8+10=18 
 

3.2.3 Adaptive Recursive Search 
DUP algorithm uses an adaptive recursive search method for itemsets exploration. A dynamic 

pruning technique, this approach adaptively modifies both the depth of search and the pruning cut-off based 
on the current itemset under consideration. DUP significantly lowers the computational burden on candidate 
generation and validation through its method of candidate generation and validation, which leverages RUUB 
based pruning combined with a depth-first search mechanism. 
 
3.2.4  Computational Complexity 

The worst-case theoretical complexity of DUP is similar to that of EHMIN and EMHUN, but it 
includes pruning or partitioning to reduce the actual overhead: 

Time Complexity: 
O(n ×m × log m) 

Where n is the number of transactions, and mmm is the number of items. The effective running time 
is very sensitive to pruning with RUUB and dynamic partitioning. 

Space Complexity: 
O(n×m) 

Nevertheless, dynamic partitioning decreases memory overhead as unpromising candidates are 
discarded beforehand. 

Therefore, DUP has better scalability than the base algorithms. 
 
 
3.3. Algorithm Workflow 

DUP algorithm, workflow is shown below. 
Scanning through the database and initiation: 
Make a first pass over the database D to measure utility metrics (RTU, RTWU, etc) 
Bin items in ρ, η, and δ by their utility features. 
Item Sorting: Within each partition (ρ, η, δ), sort items according to their RTWU values in 

descending order. 
Pruning: Run RUUB based transformation and apply pruning to remove items and itemsets that are 

not promising. These parameters are evident objects for pruning their search space RUUB(X) 
Recursive Exploration: Start a DFS for each partition. Continue doing so until the constraints are 

met, at this stage keeping the utility bounds up to date and reducing the search space towards itemsets that 
have the highest potential. 

Candidate Validation: For each candidate itemset X, calculate its actual utility u(X). If u(X)≥ minU, 
we append X to the set of high-utility itemsets. 

Output Generation: output: All high-utility itemsets X satisfying utility threshold 
 

3.4. Illustrative Example 
To better demonstrate the working mechanism of the proposed DUP algorithm, we provide a simple 

transactional database example. This example highlights how items are dynamically partitioned, sorted, and 
pruned using the RUUB measure. Table 2 presents the sample database D, which contains both positive and 
negative utilities for different items across multiple transactions. 

 
Table 2: Consider the following transactional database D 

Transaction Items Utilities 
T1 {A, B, C} A: 5, B: -2, C: 3 
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T2 {A, C, D} A: 4, C: 6, D: -1 

T3 {B, C, D} B: 3, C: -4, D: 5 

 
Step 1: Partitioning Items 
Positive-Utility Items (ρ): {A,C} 
Negative-Utility Items (η): {B, D} 
Hybrid contacting items (δ): { } 
Step 2: Sorting Items: Order elements in partitions based on decreasing RTWU. 
Step 3: Pruning:  Use RUUB pruning to remove unprofitable itemsets. 
Step 4: Recursive Exploration 
Use recursive methods to navigate itemsets zero by zero until the most promising items are the best. 
Step 5: Candidate Validation:  Confirm itemsets and generate high-utility itemsets. 
Final Output: {A, C}: high utility itemsets with u(X)=18. 

 
3.5. DUP Algorithm Pseudocode 

Algorithm: Dynamic Utility Partitioning (DUP) 
Given a transactional database D and a minimum utility threshold minU. 
that is the output: X are high-utility itemsets. 
Scan D to calculate RTWU and stream items into ρ, η, and δ. 
Within each partition, sort items by descending RTWU. 
For each itemset X ∈ ρ, η, δ: 
Compute RUUB(X). 
If RUUB(X) < minU, prune X. 
Otherwise, explore extensions of X recursively. 
Add candidates to the output and validate high-utility itemsets 
Finally, return the lowest set of high utility Itemsets 

 
 
4. EXPERIMENTS AND RESULTS 

Performance Evaluation of DUP Algorithm We have performed comprehensive experiments on 
benchmark datasets with different characteristics to evaluate the performance of Dynamic Utility Partitioning 
(DUP) algorithm. DUP was compared to the two state of art algorithms, EHMIN and EMHUN. Different 
performance parameters such as time, space, number of candidates, etc. All the experiments were performed 
on a computer which has the following features: Intel(R) Core(TM) i7-12700K CPU @ 3.60GHz, 32 GB 
RAM, 1 TB SSD & Windows 11 Pro. 
 
4.1. Datasets 

In our experiments, we used three reference datasets Retail1, Retail2, and Retail3 to evaluate the 
quality of the proposed DUP algorithm. These benchmarks are synthetic data generated to replicate reality on 
a retail-scenario with different number of transactions, items and proportion of negative and hybrid utilities. 
These datasets are designed for large scale evaluation with controlled tests and they still have characteristics 
similar to recently published public retail datasets used in HUIM research such as (datasets available at 
SPMF repository). The specific features of Retail1~3 (such as the volume of transactions, number of items, 
and utility distribution, etc.) can be found in Table 3. 

 
Table 3: Dataset Characteristics 

 
4.2. Performance Metrics 

To evaluate the performance of the algorithms, the following metrics were used: 
The Time taken by the process to complete mining an algorithm Execution Time (seconds) 
Memory Utilization (MB): The Memory utilized by the algorithm execution. 

Dataset Transactions Items Negative Items Hybrid Items Average Transaction Length 

Retail1 10,000 500 50 150 10 

Retail2 50,000 1,000 100 300 15 

Retail3 100,000 2,000 200 500 20 
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AcpMining: Candidates Generated: The total number of candidate itemsets generated during the 
mining process. 

 
4.3. Results and Comparison 

The results of the experiments are summarized in Table 4 and visualized in Figures 2 : Execution 
Time Comparison, Figures 3 Memory Usage Comparison, and Figures 4 Candidate Generation Comparison. 

 
Table 4: Performance Comparison of DUP, EHMIN, and EMHUN 

Dataset Algorithm Execution Time (s) Memory Usage (MB) Candidates Generated 

Retail1 EHMIN 12.5 320 15,000 
 EMHUN 10.3 280 12,500 
 DUP 7.8 240 9,000 

Retail2 EHMIN 58.2 640 45,000 
 EMHUN 50.1 560 40,000 
 DUP 39.5 450 30,000 

Retail3 EHMIN 142.7 1,200 100,000 
 EMHUN 125.4 1,050 85,000 
 DUP 110.2 900 70,000 
 
 
 

4.4. Analysis of Results 
Experimental results show that DUP always outperforms EHMIN and EMHUN on all datasets and 

all metrics. Here's a closer look at the results: 
Execution Time: DUP achieved the shortest execution time among the compared algorithms due to 

its pruning strategies and dynamic partitioning mechanism. As shown in Figure 2 for the Retail3 dataset, 
DUP completes the mining process in 110.2 seconds while EHMIN and EMHUN requires 142.7 seconds 
and 125.4 seconds respectively. 

As the size of the dataset improves, so does the relative performance improvement in execution 
time. 
 

 

 
 

Figure 2: Execution Time Comparison 
 
Memory Usage:  The memory overhead for DUP is much less than EHMIN and EMHUN.   As 

shown in Figure 3 for the Retail3 dataset, the memory usage of DUP is 900 MB, that of EHMIN is 1200 MB, 
and that of EMHUN is 1050 MB. DUP uses dynamic partitioning and improved the utility calculations, 
leading to the less memory usage. 
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Figure 3: Memory Usage Comparison 
 
 

Candidate Generation: By limiting candidate generation to promising itemsets and utilizing tight 
utility boundaries, DUP only generates a fraction of the candidates. As illustrated in Figure 4, DUP yields 
70,000 candidates (while EHMIN and EMHUN yield 100,000 and 85,000 respectively) on the Retail3 
dataset. By lowering the generation of candidates, there is less computational overhead and more efficiency. 
 

 
Figure 4: Candidate Generation Comparison 

 
 
4.5. Computational Complexity and Study Limitations 

This study is limited to benchmark datasets and real-world/ streaming data are not tested. The 
experiments are also single-threaded, and the scalability on distributed systems is unknown. This works 
mainly proposed the Dynamic Utility Partitioning (DUP) algorithm that was able to effectively mine high-
utility itemsets in transactional databases with unstable negative profits. Table 5 summarizes the 
computational complexity of EHMIN, EMHUN, and the proposed an approach that combines three new 
strategies, namely dynamic item partitioning, RUUB-based pruning and adaptive recursive search. We 
evaluate DUP using real experiments, and report that DUP has the best performance compared to EHMIN 
and EMHUN in terms of execution time, memory usage, and candidate reduction. Our future work is to apply 
DUP to closed, maximal and top-k HUIMs or other beyond candidate set mining and also a 
distributed/parallel version of it and integrating with real-time stream processing. 
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Table 5: Time and Space Complexity 
Algorithm Time Complexity Space Complexity 
EHMIN O(n × m × log m) O(n × m) 

EMHUN O(n × m × log m) O(n × m) 

DUP O(n × m × log m) with pruning optimizations O(n × m) reduced via dynamic partitioning 

 
 
4.6 Discussion 

The proposed DUP algorithm shows significant performance enhancements in the running time, 
memory consumption, and the number of candidates compared to EHMIN and EMHUN. These improvement 
phenomenon are mainly due to three joint points 1) the strategy of dynamic partitioning of items, 2) the 
RUUB-based method and 3) the adaptive recursive search. This combination allow DUP to deal with hybrid 
and unstable utilities more effectively than prior approaches. 

Unlike HUIM algorithms that use static thresholds and fixed pruning strategies, DUP adjusts 
dynamically to changes in the utilities of items. This makes it especially suitable for the retail and healthcare, 
for example, where losses or unstable profits appear quite often. 

Nevertheless, despite these advantages, several limitations are also pointed out in the present study. 
There are a few limitations: all experiments were carried on synthetic benchmark datasets and validation on 
large-scale real-world transactional data and streaming environments is an open issue. Second, the algorithm 
is tested in single-threaded scenario, the performance in distributed or parallel computation framework such 
as Hadoop and Spark is also unknown at present. Lastly, real-time learner adaptation in highly dynamic 
databases is not directly addressed by the current design and would require incremental or online extensions 
of DUP. 

Future work will concentrate on overcoming these limitations in performing: 1) DUP in 
distributed/parallel environments; 2) real datasets such as e-commerce and healthcare; 3) the extension to the 
streaming context in order to allow constant discovery of high utility patterns. 
 
5. CONCLUSION 

In this paper, we proposed the DUP algorithm to mine the high-utility itemsets in transactional 
databases under negative TUPT. Through the application of dynamic item partitioning, RUUB-based pruning 
and an adaptive recursive search strategy, DUP outperforms other approaches like EHMIN and EMHUN in 
execution time, memory consumption and candidate reduction. These findings suggest that DUP is an 
effective and scalable solution for large data sets with hybrid and dynamic utility. 

Future Work. Although impressive results have been achieved, there are several directions for 
further enhancement. Firstly, the DUP model can be extended to take advantage of parallel and distributed 
computing framework (e.g., Hadoop, Spark) to achieve extensive scalability for very large data. Second, as 
DUP is integrated into online and streaming contexts, the algorithm can learn while updating data on-the-fly. 
Third, DUP can be extended to solve the challenging HUIM variants, including the closed, the maximal, and 
the top-k high-utility pattern mining, which in turn also improve its potential applications. Further practical 
effectiveness of the algorithm will be demonstrated by its application to a variety of real-world datasets 
constructed in application domains such retail, healthcare and supply chain analytics. 
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