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Atrticle Info ABSTRACT
Foundation models (FMs) are revolutionizing medical imaging by transitioning from task-
Article history: specific algorithms to large-scale , generalizable systems that can learn from a broad range of
X multimodal data. Recent advances in these fields—transformer-based visual encoders ,
Received Nov., 24, 2025 promptable segmentation architectures , vision—language models , and parameter-efficient fine-
Revised Dec., 18, 2025 tuning—have resulted in improved performance among segmentation , detection , classification
Accepted Dec., 29, 2025 and report generation techniques in a variety of modalities such as MRI , CT , ultrasound , X-

ray , endoscopy , and digital pathology. Domain specific FMs (including prostate MRI, brain

MRI, retinal , ultrasound and pathology models) have proved to be effective in providing high
Keywor: ds: label efficiency and competitive or better performance with the mainstream deep learning
. models , in particular under low-annotation conditions. Trends in the research emphasize such
Foundation Models,, techniques as large-scale pretraining, multimodal integration , cross-task generalization , data-
Medical Imaging , efficient learning , and the development of universal feature encoders. Simultaneously ,
Multimodal Learning, extensive benchmarking and external validation indicate performance variability , motivating
Medicine, Promotable the continued Qevelopment of stapdardlzed §Yaluathn protocols. AQOptlon by clinical practice
. . . has been restricted because of interpretability , bias, workflow integration, computational
Segmentation , Precision requirements , and regulatory uncertainty. New options such as personalizable Al , continual
Vision Transformers. learning , federated model adaptation , and imaging—genomics integration , stand out to make
FMs key for the future of precision medicine. This article consolidates architectural , pioneering
foundation models , clinical evaluation , and translational advancements , drawing upon the

current context and future direction of foundation-model medical imaging.
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1. INTRODUCTION

Foundation models (FMs) have been a disruptive paradigm of Al , where focus moves away from task-
driven pipelines to large pre-trained and generalizable to a wide variety of clinical tasks , modalities, and data
types. This shift is particularly powerful in medical imaging. Historically , medical image analysis has been
performed using models trained on a constrained set of problems — organ segmentation , lesion diagnosis and
disease identification , for example — as these require large datasets of annotated images with heavy dependence
on the expert’s knowledge. The advance of the FMs , however , has shifted the focus of medical image analysis
towards unified , multimodal and multitask models that learn from large volumes of highly heterogeneous
medical and non-medical data and rapidly learn new tasks with low supervised workload [1], [2], [3].

Recent architectural advances (e.g. , transformer-based visual encoders , vision—language models ,
promptable segmentation , SAM) have increased the representational power of medical Al by allowing for
cross-modality reasoning, robust feature extraction, and improved generalization over institutions and
populations. There is a growing emphasis on domain-specific FMs , with systems for prostate MRI , brain MRI
, retinal images , chest radiographs, ultrasound, endoscopy , pathology and ECG interpretation outperforming
traditional approaches especially in regions lacking labels [4] , [5], [6].

Simultaneously , multimodal and multitask learning is becoming extensively used in the research
community , as FMs combine imaging with clinical notes , laboratory data, genomics , and physiological
information to help more complete diagnosis and prognosis modelling [7], [8]. Self-supervised learning , few-
shot learning , and parameter-efficient fine-tuning are enabling unprecedented label efficiency , while federated
learning and privacy-preserving frameworks offer pathways for large-scale , multi-institutional model
development without compromising patient confidentiality [9], [10], [11].

Notwithstanding such progress , clinical translation remains limited. Obstacles include interpretability ,
bias , regulatory uncertainty , computational constraints , and challenges in integrating FMs into real-world
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workflows such as PACS, RIS, and EHR systems [12], [13]. Initial clinical evaluations show significant zero-
shot and few-shot performance yet display variation across populations and modalities, highlighting the
importance of rigorous benchmarking and external validation [14].

At the frontier , emerging opportunities such as personalized Al , continual learning , federated FM
adaptation , and imaging—genomics integration are positioning FMs as major enablers of next-
generationprecision medicine. These directions move beyond static , one-size-fits-all systems toward models
that evolve with clinical practice, adapt to individual patient trajectories , and provide real-time , context-aware
decision support [15], [16].

This review synthesizes recent architectural advances , leading foundation model systems , major research
trends , clinical evaluation practices , and emerging opportunities for personalized and continual-learning
medical Al By integrating insights across modalities , specialties , and methodological innovations , it provides
a comprehensive perspective on the evolving landscape of foundation models in medical imaging and
highlights key challenges and research directions necessary to achieve safe , equitable , and clinically effective
deployment. This review focuses on vision-based , vision—language , and multimodal foundation models for
medical imaging and clinical imaging workflows , and does not aim to comprehensively cover non-imaging
large language model applications such as drug discovery or purely textual clinical decision support.

This review makes four key contributions. (1) It provides a consolidated taxonomy of foundation models
in medical imaging , spanning general-purpose vision—language models and specialized medical-domain FMs
across radiology , pathology , ophthalmology , ultrasound , ECG , and EHR applications. (2) It synthesizes
recent architectural advances—including transformer backbones , multimodal and self-supervised pretraining
, promptable segmentation , and parameter-efficient adaptation—and links them to major research trends. (3)
It critically evaluates current clinical adoption , benchmarking practices , and translational barriers such as
interpretability , bias , workflow integration , and regulatory challenges. (4) It outlines emerging directions for
personalized Al , continual learning , federated collaboration , and multimodal clinical reasoning , offering a
forward-looking agenda for safe and effective FM deployment in precision medicine.

2. LITERATURE SEARCH AND REVIEW METHODOLOGY

This comprehensive review synthesizes recent research on vision and multimodal foundation models
(FMs) in medical imaging. The methodological approach follows structured narrative review practices
commonly adopted in contemporary Al-in-medicine surveys , emphasizing breadth of coverage , conceptual
synthesis , and translational relevance rather than exhaustive quantitative aggregation [17], [13].

2.1 Search Strategy and Sources

A structured literature search was conducted across Scopus, PubMed , IEEE Xplore , and Web of
Science , covering publications from 2019 to 2026. The search combined keywords and phrases including
foundation model, vision-language model , medical imaging foundation models , multimodal Al , zero-shot
learning ,pretraining , and clinical adoption. This strategy was designed to capture both methodological
advances and clinically oriented studies , and is consistent with search protocols used in recent surveys of
multimodal and vision—language foundation models [18]. Additional relevant articles were identified through
citation snowballing and cross-referencing of key review papers , following established study selection
practices [19].

2.2 Inclusion Criteria
Studies were included if they:

1. Investigated foundation models , large vision models , or vision—language models applied to medical
imaging.

2. Reported contributions related to model architecture , large-scale pretraining , adaptation strategies ,
multimodal reasoning , evaluation , or clinical translation.

3. Provided quantitative results or qualitative analysis relevant to medical imaging tasks or clinical
workflows.

These criteria are aligned with inclusion practices adopted in recent foundation-model-focused medical
imaging reviews [20].
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2.3 Exclusion Criteria
Studies were excluded if they:

Focused exclusively on non-medical applications of foundation models ,

Addressed traditional deep learning approaches without foundation-model characteristics ,
Lacked accessible full text , or

Were not published in English.

2.4 Study Selection Approach

Study selection was conducted in two stages. First , titles and abstracts were screened to remove clearly
irrelevant publications. Second , full-text assessment was performed to evaluate relevance with respect to
foundation-model architecture , multimodal integration , evaluation methodology , and translational potential.
This staged screening process follows established practices for structured narrative reviews in foundation-
model and healthcare Al research [13].

2.5 Data Extraction and Synthesis
From each included study , information was extracted regarding:

e  Model category (vision-only , vision—language , or multimodal foundation model) ,

e  Architectural design (e.g. , transformer-based , SAM-derived , self-supervised , or parameter-efficient
fine-tuning approaches) ,

e  Pretraining scale , modality coverage , and data diversity ,

e Targeted downstream tasks (e.g. , segmentation , detection , report generation , or clinical reasoning)
,and

e Clinical relevance , adoption barriers , and translational readiness.

The extracted findings were synthesized qualitatively to identify recurring architectural patterns ,
emerging research trends , evaluation practices , and open challenges , following synthesis strategies commonly
used in recent foundation-model surveys in medical imaging [17].

2.6 Methodological Limitations

This review adopts a structured narrative approach rather than a fully systematic or meta-analytic
methodology , which may introduce selection bias and limits the ability to quantitatively compare performance
across studies. Although multiple major bibliographic databases were searched and citation snowballing was
employed , it is possible that relevant studies—particularly preprints , non-English publications , or rapidly
evolving industrial reports—were not captured. In addition , reported performance metrics across foundation
model studies vary substantially in terms of datasets , evaluation protocols , and clinical contexts , which
constrains direct cross-study comparability. Finally , many included works focus on proof-of-concept
evaluations or retrospective analyses , and therefore their findings may not fully reflect real-world clinical
deployment conditions. These limitations highlight the need for standardized benchmarks , transparent
reporting practices , and prospective clinical validation in future foundation model research.

3. FOUNDATIONS OF VISION AND MULTIMODAL FOUNDATION MODELS

Foundation models (FMs) represent a major conceptual shift in artificial intelligence. Unlike traditional
deep learning systems trained for narrow , task-specific purposes , FMs are large-scale architectures pre-trained
on extensive datasets that enable strong generalization across diverse downstream applications. Their
scalability , robust representation learning , and adaptability to multimodality have positioned them as central
technologies in modern medical Al , supporting vision-based tasks , clinical text processing , and integrated
healthcare analytics [21], [22], [23].
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Two broad categories of FMs are now prominent in healthcare: general-purpose foundation models ,
originally developed for natural images or language; and medical-specific foundation models , pre-trained
directly on clinical data across modalities such as MRI, CT , ultrasound , ECG , EHR , or whole-slide pathology
images. Figure 1 shows general-purpose and medical-specific models across imaging modalities.

Foundation Models in Medical Imaging

I
v v
General-Purpose Medical-Specific
Models Models

|
v v

Vision-Only L;/riziggg_;e Vision-Language Multimodal

I I I
N T e I S Y

MRI o X-ray Pathology| | ECG |

Figure 1: Taxonomy of Vision , Vision—Language , and Multimodal Foundation Models in Medical
Imaging.

3.1 General-Purpose Foundation Models in Medical Imaging

General-purpose models , although not designed for clinical use , have been adapted for medical imaging
and multimodal healthcare applications.

e CLIP and SigLIP.

CLIP and SigLIP are large-scale image—text alignment models that demonstrate strong performance in
natural image understanding. However , studies have shown that these models generalize poorly to medical
domains such as skin imaging , endoscopy , and oral diagnostics without additional domain-specific pretraining
, due to the substantial visual distribution shift between natural and clinical imagery [24].

e Large Language Models (LLMs): GPT , BERT , PaLM , LLaMA.

Transformer-based LLMs have been widely used to summarize clinical notes , assist tumor board
discussions , and support decision-making workflows. Their ability to encode medical knowledge contextually
makes them powerful tools for downstream tasks in EHR analysis , clinical reasoning , and multimodal report
generation [25].

e Segment Anything Model (SAM).

SAM introduced prompt-based universal segmentation capabilities. Although powerful in natural images
, SAM underperforms in medical contexts—particularly for multimodal MRI or CT segmentation—unless
enhanced through medical-domain adaptation mechanisms such as volumetric adapters or medical-specific
fine-tuning [26] , [27].

Overall , general-purpose models provide strong priors but require substantial adaptation to achieve
clinically reliable performance.
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3.2 Medical-Specific Foundation Models

Medical-specific foundation models (FMs) address many of the limitations of general-purpose models by
explicitly incorporating domain knowledge , clinical priors , and modality-specific structural characteristics
during pretraining. Unlike natural-image-based FMs , these models are trained directly on large-scale medical
datasets , enabling them to capture anatomical regularities , disease-specific patterns , and imaging physics that
are essential for reliable clinical performance.

Modality- and Organ-Specific Foundation Models

A growing body of work has focused on developing FMs tailored to specific imaging modalities or
anatomical systems:

e PCaSAM (Prostate MRI): A multimodal MRI foundation model designed for prostate cancer
analysis , demonstrating improved segmentation accuracy and enhanced PI-RADS scoring across
external validation cohorts [6].

e  SAM-Brain3D (Brain MRI): A brain-specific FM trained on more than 66 ,000 labeled MRI
volumes , achieving state-of-the-art performance across multiple brain sub-modalities and disease-
related segmentation tasks [27].

e CT-based Foundation Models: Scalable CT foundation models have been proposed to support
multi-organ analysis and cross-task generalization , enabling effective transfer across diverse
anatomical regions and clinical tasks [4].

e Retinal and Endoscopic Foundation Models: Medical-domain foundation models have also been
developed for retinal imaging and gastrointestinal endoscopy , supporting disease detection ,
segmentation , and classification with improved label efficiency and robustness compared with task-
specific baselines [4].

e USFM (Ultrasound): A universal ultrasound foundation model trained on more than two million
images across organs and acquisition protocols , demonstrating strong label efficiency and cross-organ
generalization [4].

e KED (ECG Foundation Model): A large-scale ECG FM capable of zero-shot interpretation across
cardiac rhythms and abnormalities , achieving cardiologist-level diagnostic performance and
providing interpretable explanations [28].

e Ark (Chest X-ray): A radiography foundation model trained on large-scale public datasets ,
outperforming proprietary chest X-ray models in classification , localization , and segmentation tasks
while maintaining strong generalization across datasets [29].

Pathology Foundation Models

Histopathology has emerged as one of the fastest-growing application domains for medical foundation
models , driven by the availability of large whole-slide image datasets and the need for robust generalization
across staining protocols and scanners:

e CONCH, UNI, and Virchow2: These pathology foundation models achieve high performance in
colorectal cancer microsatellite instability prediction and demonstrate strong robustness to stain
variation and resolution differences. CONCH , in particular , reported balanced accuracies exceeding
0.77 on external validation datasets [30].

e Clinical Histopathology Imaging Evaluation Foundation Models: Large-scale pathology FMs
enable consistent and generalizable cancer characterization across multiple tumor types and datasets
, supporting both diagnostic and prognostic workflows [31].

Graph-Based and Multimodal Foundation Models

Beyond image-centric architectures , foundation models are increasingly extended to structured and
multimodal clinical data:
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e Foundation Model for Functional Connectivity: A graph transformer-based FM designed for fMRI
analysis , outperforming multiple competing approaches in cognitive and psychiatric prediction tasks
by modeling complex brain connectivity patterns [32].

o EHR Foundation Model (FM-SM): A foundation model trained on large-scale electronic health
record data , demonstrating strong hospital-to-hospital transferability and improved performance in
low-label settings with minimal fine-tuning [23].

Collectively , these medical-specific foundation models illustrate how domain-aware pretraining enables
the learning of anatomical structures , physiological relationships , and modality-dependent invariances that
are difficult—or impossible—to acquire from natural-image or generic multimodal data alone. Their success
underscores the importance of medical-domain data , task alignment , and modality-specific design in
achieving clinically reliable and generalizable foundation-model-based Al systems.

3.3 Evidence of Effectiveness in Real Clinical Studies

Medical foundation models have demonstrated robust generalization , label efficiency , and clinical
reliability:

PCaSAM improved PI-RADS scoring by 8.3—8.9% and achieved DSC > 0.70 on external datasets [6].
SAM-Brain3D outperformed state-of-the-art baselines across 14 MRI sub-modalities [27].

USFM maintained strong multi-organ performance even with only 20% labeled data [4].

KED matched experienced cardiologists in zero-shot clinical ECG interpretation [28].

Ark surpassed Google’s CXR-FM in chest X-ray classification , localization , and segmentation [29].
CONCH achieved pathologist-validated interpretability scores of up to 92.4% [30].

FM-SM provided transferable EHR modeling with minimal data requirements [23].

These results confirm the superiority of medical-specific FMs for many real-world clinical applications.

3.4 Comparative Insights and Limitations

e  General-purpose models (CLIP , SigLIP , SAM) offer broad generalization but show limited
performance in medical imaging without domain adaptation [24] , [26].

e Medical-specific models typically achieve higher diagnostic accuracy , segmentation quality , and
generalization due to domain-tailored pretraining [4].

e  Parameter-efficient fine-tuning improves adaptation for low-resource clinical settings [33] , [34].

e  Many models remain limited to their primary modality and face challenges when generalizing to
cross-domain or cross-task settings.

Table 1 shows a summary of several foundation models.

Table 1. Selected Foundation Models and Their Effectiveness.

Model (Reference) Domain / Modality Key Findings
CLIP, SigLIP [24] General-purpose Limited performance on clinical images
PCaSAM [6] Prostate MRI Higher DSC, improved PI-RADS score
SAM-Brain3D [27] Brain MRI Multi-submodality state-of-the-art segmentation
USFM [4] Ultrasound High robustness, strong label efficiency
KED [28] ECG Zero-shot, cardiologist-level performance
Ark [29] Chest X-ray Outperforms Google CXR-FM
CONCH / UNI / Virchow?2 Pathology High accuracy, validated interpretability
FM—[S3131] [23] EHR Strong transferability in low-label settings

Vision and Multimodal Foundation Models in Medical Imaging: A Comprehensive Review of Architectures ,
Clinical Trends , and Future Directions... (Hikmat Z. Neimal)
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4. ARCHITECTURAL ADVANCES IN MEDICAL FOUNDATION MODELS

Recent architectural developments in FMs have significantly reshaped the landscape of medical image
analysis. Modern FMs are pre-trained on large-scale heterogeneous datasets and subsequently adapted to a
wide spectrum of downstream clinical tasks with minimal labeled data. This shift has enabled stronger cross-
domain generalization , improved robustness , and enhanced multimodal integration across segmentation ,
classification , detection , and localization tasks [35] , [36]. Evolution of medical foundation model
architectures from CNN-based designs to transformers , promptable segmentation , and multimodal foundation
models , highlighting key adaptation mechanisms is illustrated in Figure 2.

CNN SAM Multimodal

B t-
SSL —L— "oty FMs
PEFT Tuning

UniverSeg
PCaSAM, Ark

Figure 2: Evolution of Medical Foundation Model Architectures.

4.1 Transformer-Based and Hierarchical Vision Models

Vision Transformers (ViT) and hierarchical models like Swin Transformers are the preliminary works in
the direction of general medical FMs. They have the ability to model long-range global dependencies and thus
to model the anatomy structure and pathological variation more effectively. To the above end , Swin
Transformers (with hierarchical shifted windows) can further increase efficiency and scalability for high
resolution medical images [37] , [38]. These architectures are also robust for multimodal learning , assisting
in incorporating imaging with complementary data , including clinical metadata.

4.2 Prompt-Based Segmentation Models: Adaptation of SAM for Medicine

SAM adaptation for the context of medicine. The Segment Anything Model (SAM) has brought prompt-
based segmentation to FM design. Although SAM is able to generalize well to natural images , its application
to medical images is limited by the appearance characteristic of the modality specific to these images. To fill
in the existing gaps , the recent works like 3DSAM-adapter adopt volumetric computation , spatial adapters
and parameter-efficient tuning methods to expand the possibilities of SAM in the case of CT or MRI
segmentation tasks [39]. The adaptations show how promptable segmentation paradigms can effectively be
scaled and transferred to clinical imaging.

4.3 Domain-Specialized Medical Foundation Models

In addition to generalized models , domain-specific FMs have also developed to address the specific
requirements of medical imaging. UniverSeg presents a flexible , label-efficient segmentation scheme that is
robust for many kinds of organs and modalities with few or no labels. Likewise , PCaSAM demonstrates
competitive or superior performance on both internal and external validation cohorts compared with generalist
FMs. These specific models demonstrate that the inclusion of medical-specific priors can be successful in FM
architectures.

4.4 Multimodal and Cross-Modal Architectures

One of the hallmarks of the new generation of medical FMs is their utilization of non-image modalities ,
which allows a more interpretative clinical picture. Multimodal foundation models in medical imaging combine
medical imaging with patient history , ECG signals, and radiology reports to optimize diagnostic reasoning [8]
, [36]. Novel approaches like MedLAM , a self-supervised 3D anatomical localization model and MedLSAM
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, a combined model of MedLAM and SAM,, illustrate how multimodal synergy can alleviate some annotations
and help make a more effective global approach in cases of complex volumetric data [5].

4.5 Self-Supervised Learning and Parameter-Efficient Adaptation

Self-supervised learning (SSL) has been developed for FM pretraining and provides an open platform for
training on unlabeled inputs to learn semantically enriched representations. RadioDINO demonstrates that
contrastive and self-distillation methods also yield robust features that outperform classical supervised methods
in the classification and segmentation problems [40].

Parameter-efficient fine-tuning (PEFT) enables efficient next stage adaptation. Methods like Few-Shot
Efficient Fine-Tuning (FSEFT) and Embedded Prompt Tuning (EPT) create little collections of learnable
parameters — adapter or prompt tokens — to reposition FM representations for particular tasks to reduce
computation to a minimum while keeping a high level of accuracy [33], [34].

4.6 Generative and Hybrid Architectures

Generative and hybrid architectures are more and more used in FM pipelines. Autoencoder—GAN—
transformer hybrid models enhance synthetic image plausibility , enhance high-level image enhancement and
text-based interpretation , contributing to the transparency in diagnostic reporting [41]. Diffusion based
architectures are also becoming effective for denoising , reconstruction and data augmentation. In the context
of medical object detection , hybrid architectures that integrate YOLO , vision transformers and advanced
attention mechanisms (e.g. , CSP, SPP , BiFPN) have been shown to have enhanced localization performance
and efficiency in lesion detection tasks [42].

4.7 Challenges and Open Technical Gaps

While there have been significant advancements , there are still a number of technical issues to overcome.
The general-purpose vision FMs suffer from potential underperformance on medical databases because of the
gaps in their domain and the lack of medical priors , and thus may need to use domain adapted training or
structural modification [35]. Scarcity , inconsistent validation protocols and a lack of large multimodal medical
data sets also limit scalability and cross-institutional generalization [37]. It is important that such gaps be
addressed as clinically reliable FM deployment is a goal. Key architectural advances in medical foundation

models are represented in Table 2.

Table 2. Key Architectural Advances in Medical Foundation Models.

volumetric tuning

Model / Ref. Domain / Core Architectural Remarks
Application Contribution
ViT, Swin Segmentation, Global and hierarchical Strong generalization;
Transformer [37], classification attention multimodal compatibility
[38]
SAM — 3D Organ / tumor Prompt-based Efficient adaptation; domain
Adapters [39] segmentation segmentation; gap constraints

UniverSeg [5]

Multi-organ tasks

Domain-specialized

Outperforms task-specific

segmentation baselines
PCaSAM [6] Prostate cancer Multimodal MRI Strong internal/external
segmentation generalization
MedLAM / Volumetric 3D localization + SAM | Reduces annotation burden;
MedLSAM [5] imaging integration competitive performance
RadioDINO (SSL) Classification, Radiomics-aware self- Greater robustness vs
[40] segmentation supervision supervised learning
FSEFT [33] Few-shot Parameter-efficient fine- Resource-efficient; high
segmentation tuning accuracy
EPT [34] Few-shot Embedded prompt Improves calibration and
segmentation tuning performance
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GAN/AE/ Synthetic data, Generative modeling + | Better realism; interpretable
Diffusion Hybrids enhancement attention outputs
[41]
YOLO + Hybrid Lesion / object CSP, SPP, BiFPN + ViT High precision; fast
Attention [42] detection attention inference

5. MAJOR RESEARCH TRENDS IN MEDICAL IMAGING FOUNDATION
MODELS

Foundation models have rapidly become a core research direction in medical imaging , enabling
improvements in diagnostic accuracy , workflow automation , and clinical decision-making across MRI, CT ,
X-ray , ultrasound , endoscopy , retinal imaging , dermoscopy , and pathology [1] , [2], [43], [44]. Current
research trends center on pretraining scale , multimodal capabilities , data efficiency , robustness , and
adaptation strategies , with growing empbhasis on clinical translation.

5.1 Large-Scale Pretraining and Cross-Modality Generalization

A dominant trend is pretraining FMs on extremely large , heterogeneous imaging datasets to develop rich
visual representations that transfer effectively to downstream tasks with minimal labeled data [7] , [45]. This
enables broad generalization across modalities and pathologies.

Alongside generalist models , there is growing momentum toward modality-specific FMs that address
the physics , artifacts , and diagnostic requirements of each modality—for example , ultrasound [45] , CT [5]
, endoscopy [4] , and retinal imaging [24].

Research also explores adapting general-purpose vision FMs—such as SAM , ViT , and CLIP—for
medical tasks through architectural modification or domain-specific pretraining [46] , [47] , balancing the
benefits of large natural-image pretraining against fully medical-native models.

5.2 Expanding Applications and Model Capabilities

FMs now achieve expert-level or near-expert performance in core clinical tasks including organ
delineation , tumor detection , and multidisease classification [43] , [46]. Models such as SAM-Med2D ,
MedSAM , and EyeCLIP demonstrate broad applicability across imaging types.

Emerging multimodal FMs integrate images , text , and clinical metadata , supporting cross-task
generalization and unified pipelines for detection , segmentation , diagnosis , and report generation [7] , [48].
FMs are increasingly used as universal feature encoders , supplying robust high-level representations that
benefit tasks ranging from tumor classification to disease progression modeling [47].

5.3 Data Efficiency and Robustness to Variability

Through self-supervision , zero-shot , and few-shot learning , FMs consistently reduce reliance on large
annotated datasets. FMs also show increased resilience to real-world variation , including equipment
differences , imaging protocols , annotation variability , and patient diversity. This robustness is critical for
clinical deployment , particularly across multi-center settings. Self-supervised , semi-supervised , and few-shot
learning remain major research directions aimed at mitigating data annotation challenges and improving
generalization under data scarcity [2], [17], [43].

5.4 Model Adaptation , Evaluation , and Open Science

A key research question is whether medical FMs should be adapted from large natural-image models or
built entirely from medical data. Evidence supports both approaches , with some studies demonstrating benefits
from general-purpose pretraining for medical segmentation [39].

Given the diversity of tasks and modalities , the field is calling for unified evaluation frameworks and
benchmarks to systematically assess model robustness and cross-domain generalization [2], [17]. Large-scale
public datasets such as GastroNet-5SM and DIAS are accelerating model development and enabling
reproducibility [17], [45] , reflecting a strong trend toward open science.

5.5 Challenges and the Road Ahead

Clinical adoption requires interpretable and trustworthy Al. Explainability , fairness , and ethical
deployment remain key research challenges [43]. Integration of imaging with genomics , proteomics , and other
molecular data represents an emerging frontier aimed at uncovering biological mechanisms and enabling
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precision medicine [7] , [47]. High-variability modalities such as ultrasound , photographic imaging , and
endoscopy highlight the need for specialized architectures to overcome noise , artifacts , and domain gaps [49]
, [50].

Efficiency , robustness to degraded image quality , edge deployment , and workflow integration remain
practical hurdles for real-world deployment. Table 3 illustrates the trends in medical imaging foundation

models.

Table 3. Key Trends in Medical Imaging Foundation Models.

Trend / Theme (Ref.) Core Description Implications
Large-scale pretraining [7], Massive datasets enabling broad | Improved cross-modality transfer
[45] generalization and scalability
Modality-specific FMs [4], Tailored models for CT, Better robustness to modality-
[24], [45] ultrasound, retinal imaging, specific artifacts
endoscopy

Transfer learning and
adaptation [39], [46], [47]

Adapting SAM, ViT, and CLIP
for medical tasks

Balances general-purpose
pretraining with medical
specificity

Data efficiency and
robustness [2], [17], [43]

Few-shot learning and resilience
to domain shifts

Reduced annotation cost;
improved multi-center

generalization
Benchmarking and open Public datasets and standardized | Improved reproducibility and fair
science [17], [45] evaluation protocols comparison
Interpretability and ethics Explainability, fairness, and Increased clinical trust and
[43] responsible deployment adoption

Multimodal and genomic
integration [7], [47]

Imaging—genomics fusion for
precision medicine

Deeper biological insight and
personalized care

Real-world deployment
[49]. [50]

Workflow integration, robustness,
and edge deployment

Practical clinical feasibility

Overall , research in medical imaging foundation models is advancing rapidly toward scalable ,
multimodal , data-efficient , and clinically aligned systems. Core trends include large-scale pretraining ,
modality-specific design , improved robustness , and ethical deployment. The field is steadily moving toward
integrated , explainable models capable of supporting real-world clinical workflows at scale.

6. CLINICAL ADOPTION AND EVALUATION OF MEDICAL FOUNDATION
MODELS

Although FMs are still at an early stage of clinical deployment , interest in their translational potential
has accelerated across radiology , pathology , ophthalmology , neurology , and oncology. Their multimodal
and multitask capabilities—spanning text , images , and structured data—support applications in diagnosis ,
treatment planning , report generation , and automated image analysis [3], [12], [51]. Figure 3 demonstrates
clinical translation pipeline of foundation models from pretraining to deployment , highlighting key barriers
and mitigation strategies for real-world adoption.

Federated
Learning
Human-in-

Bias - Interpretability - Compute

Regulation the-Loop (HIT)

Clinical Translation Pipeline Monitoring

Figure 3: Clinical Translation Pipeline of Foundation Models.
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6.1 Early Clinical Applications and Demonstrated Potential
FMs are increasingly evaluated as generalist backbones for a variety of clinical tasks:

o In digital pathology and oncology , FM-based systems have achieved high diagnostic accuracy and , in
some settings , matched or exceeded pathologist performance after limited fine-tuning [3], [51], [52].

e In radiology , several foundation-model-based chest X-ray interpreters and multimodal diagnostic
assistants have demonstrated promising performance in image interpretation and report generation ,
although routine clinical integration remains limited [12].

e Across multiple imaging domains , FMs leverage transfer learning to deliver strong performance even
where labeled data are scarce , highlighting their potential for data-limited specialties and rare diseases
(61, [52].

These results support the notion that FMs can serve as versatile , reusable components in clinical Al
pipelines—provided their behavior is rigorously evaluated and contextually constrained.

6.2 Evaluation Practices and Benchmarking Trends

A key translational trend is the shift from purely algorithmic metrics toward systematic , comparative
evaluation:

o Studies increasingly compare FMs against strong task-specific baselines , particularly in segmentation
and histopathology , to determine whether FM generality translates into real clinical benefit [14] , [52],
[53].

e Zero-shot and few-shot evaluation protocols are commonly employed to probe generalization to unseen
datasets , institutions , and tasks [17] , [52]. These analyses often reveal that while FMs are highly flexible
, performance can be uneven across populations and tasks.

e Some evaluations have shown that non-foundational , domain-specific models outperform general-
purpose FMs in challenging histopathology tasks , emphasizing the importance of high-quality ,
multimodal medical data and thorough expert validation [14].

Overall , the community is moving toward rigorous benchmarking and reproducibility , recognizing that
FM performance must be assessed under realistic clinical conditions , not just curated research datasets.

6.3 Barriers to Clinical Integration

Despite promising technical results , widespread clinical adoption remains limited due to multi-layered
challenges:

o Interpretability and trust. Limited transparency and difficulty explaining FM decisions continue to
erode clinician trust and impede regulatory acceptance [3], [13].

e Bias and generalizability. FMs are sensitive to biases in training data and may not generalize across
underrepresented populations , institutions , or imaging protocols [13], [54].

e Workflow and infrastructure integration. Practical integration with PACS/RIS and EHR platforms
remains non-trivial. Many FM prototypes operate as stand-alone research tools rather than seamlessly
embedded components [12], [55].

e Computational and resource constraints. Training and deploying large FMs require considerable
computational resources and extensive curated datasets , which can exacerbate inequities between well-
funded centers and resource-limited institutions [54] , [55]. Regulatory and safety concerns.
Regulatory frameworks have yet to fully address FMs. Challenges include lack of formal approvals ,
limited external validation , and safety risks such as hallucinations and automation bias [12], [53].

o Ethical and societal issues. Persistent concerns include privacy , fairness , and dependence on
proprietary FMs controlled by a small number of commercial entities [54] , [56].

6.4 Emerging Solutions and Directions for Clinical Translation
To overcome these barriers , several strategies are being actively explored:
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e Human-in-the-loop and hybrid decision-making. Human-in-the-loop frameworks aim to keep
clinicians central in the decision process , using FMs as assistive tools rather than autonomous decision-
makers [12].

¢ Federated and privacy-preserving learning. Federated learning and secure model-sharing paradigms
are considered for multi-institutional FM training without centralizing sensitive data [12].

e Continuous monitoring and national registries. Proposals for ongoing performance monitoring ,
equity-focused design , and national registries seek to track real-world FM behavior and identify
disparities over time [12], [53].

e Model compression and lightweight deployment. Distillation and compression strategies are being
developed to reduce computational demands. Integration into widely used platforms—such as QuPath
for digital pathology—facilitates pragmatic adoption in routine workflows [55].

e New reporting and evaluation standards. Recent work calls for standardized reporting guidelines ,
more robust external validation , and closer collaboration between Al researchers , clinicians , and
regulators to ensure safe , equitable deployment [53], [56].

Table 4 demonstrates several trends and challenges in clinical adoption of foundation models.

Table 4. Trends and Challenges in Clinical Adoption of Foundation Models.

Clinical Theme Core Observations

(Reference)

Implications for Adoption

High diagnostic accuracy
[31. [51]. [52]

FMs can match or exceed clinician
performance after fine-tuning

Strong translational potential,
but requires validation

Need for rigorous
evaluation [14], [17], [52],

Benchmarking vs strong baselines; zero-
and few-shot testing; external validation

Ensures reliable and
reproducible clinical

inequity

[53] performance
Integration barriers [12], Workflow incompatibility; limited Slows routine deployment in
[13], [55] regulatory approval; low clinician trust clinical environments
Data and compute demands Large, diverse datasets and high Limits adoption in resource-
[54], [55] computational requirements; risk of constrained settings

Ethical and societal
concerns [54], [56]

Privacy, bias, explainability, dependence
on proprietary models

Necessitates governance and
ethical oversight

Emerging mitigation

Human-in-the-loop, federated learning,

Enables safer and more

strategies [12], [53], [55], scalable clinical translation

[56]

lightweight models, registries, standards

7. FUTURE DIRECTIONS: PERSONALIZED , CONTINUAL , AND
FEDERATED FM-BASED Al

7.1 Generalization as a Basis for Personalization

By leveraging diverse multimodal datasets and self-supervised objectives , FMs can generalize across a
wide range of imaging modalities—including SPECT , PET , MRI, and CT—without requiring full retraining
for every new task [16] , [20], [57]. Their ability to support zero-shot and few-shot learning makes them
particularly valuable in data-scarce settings such as rare diseases and novel theranostic applications , where
annotated cohorts are inherently limited [57].

This broad generalization capability provides a strong foundation for patient-specific adaptation , where
models can be tuned or conditioned on individual characteristics while retaining global clinical knowledge.

7.2 Emerging Opportunities for Personalized Al

A key future direction is personalized medical AI—models that integrate patient-level imaging features
with other clinical and molecular signals to deliver individualized risk estimates , treatment recommendations
, and prognostic trajectories. Multimodal FMs can fuse imaging data with EHRs , laboratory results , genomics
, and physiological signals , supporting richer patient representations than imaging alone [8], [15], [58].

For example , integrating echocardiography with ECG signals , or MRI with longitudinal clinical history
, can refine personalized cardiac diagnosis and therapy selection [8] , [58] . Earlier work on patient-specific
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modeling in cardiovascular imaging already demonstrated the clinical potential of individualized parameter
estimation [59] , and FMs are poised to scale such approaches across modalities and diseases. Large language
models and vision—language models further enable personalized report generation and knowledge-based
interpretation , tailoring narrative explanations and decision support to the patient’s context rather than
producing generic outputs [20], [60].

7.3 Continual Learning for Evolving Clinical Practice

In real clinical environments , data distributions evolve over time due to changing protocols , emerging
diseases , and new imaging technologies. Continual learning techniques offer a pathway for FMs to adapt
incrementally without catastrophic forgetting. Regularization-based , memory-based , and generative replay
strategies allow models to incorporate new tasks or cohorts while preserving performance on previously
learned tasks [61] , [62]. A continual-learning—based COVID-19 screening system , for instance , was able to
progressively incorporate new chest X-ray data and classification categories while maintaining high accuracy
, demonstrating the feasibility of on-the-fly adaptation in deployed systems [61]. Expansion-based and
generative replay methods further support long-term deployment by selectively retaining task-relevant
knowledge and mitigating data retention issues [62].

Combined with FMs , continual learning could support lifelong clinical Al systems that evolve alongside
medical practice instead of remaining static after initial deployment.

7.4 Federated and Collaborative Learning at Scale

Federated learning complements FMs by enabling large-scale , multi-institutional collaboration without
centralized data pooling. In this paradigm , local model updates are shared instead of raw patient data ,
addressing privacy constraints while leveraging diverse cohorts [11], [60] , [63].

When combined with FMs , federated learning can:

o Improve robustness by exposing models to heterogeneous imaging protocols and populations.
e Support FM pretraining or adaptation across distributed centers.
e Enable privacy-preserving continual updates as hospitals accumulate new cases [29], [63].

This suggests a future in which regional or global medical FMs are collaboratively trained and refined in
a federated manner , with personalization layers added at each institution or even at the patient level.

7.5 Multimodal , Multi-Task , and Generative Learning

FMs naturally support multi-task learning , where tasks such as reconstruction , segmentation , detection
, and quantification are jointly optimized. This has the potential to streamline workflows , reduce the number
of separate models clinicians must maintain , and exploit task synergies [17], [64].

Their multimodal capabilities , coupled with generative Al , also enable:

e Synthetic data generation to alleviate annotation bottlenecks.
e  Modality translation (e.g. , PET from MRI) to support virtual imaging.
e Scenario simulation for rare conditions and edge cases [57] , [60].

These directions enhance both model robustness and the capacity for personalized scenario exploration.

7.6 Challenges and Research Priorities

Despite their promise , FM-based personalized and continual-learning systems face several unresolved
challenges:

e Interpretability and trust. Many FM architectures remain black boxes , complicating clinical
acceptance and regulatory approval [57] , [60].

e Bias and fairness. Personalized Al must avoid reinforcing existing disparities , especially when
trained on skewed datasets [17] , [64].

e Privacy and governance. Even with federated learning , model updates may leak sensitive
information if not properly secured [11], [65].
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e Regulatory and computational constraints. High training costs , energy consumption , and evolving
regulatory frameworks remain major barriers to widespread adoption [60].

Future research should prioritize adaptive and personalized FM frameworks that combine transformer
architectures , graph neural networks , and hybrid Al designs , while embedding explicit mechanisms for
interpretability , uncertainty quantification , and data governance [8], [60] , [64]. Emerging opportunities
for personalized and continual foundation models-based Al are reported in Table 5.

Table S. Emerging Opportunities for Personalized and Continual FM-Based Al.

Future Opportunity Role of Foundation Models Enabling Techniques
(Reference)
Personalized Al [8], [15], Patient-specific analysis and tailored Multimodal integration;
[201, [57], [58], [60] recommendations VLM/LLM-based interpretation
Continual learning [61], [62] Ongoing adaptation to new data and Regularization, memory-based
tasks without forgetting methods, generative replay
Federated learning [11], [29], | Privacy-preserving, multi-institutional | Distributed optimization; secure
[60], [63], [65] FM training and adaptation aggregation
Multi-task and multimodal Joint reconstruction, segmentation, Self-supervised and generative
learning [17], [57], [60], [64] quantification, and data generation modeling
Clinical workflow Automated reporting, case triage, and Prompt engineering; VLMs;
enhancement [12], [55], [60] decision support LLM-driven report generation

8. CONCLUSION AND FUTURE OUTLOOK

Foundation models have rapidly emerged as a transformative force in medical imaging , shifting the field
from siloed , task-specific algorithms toward unified , multimodal , and adaptable Al systems. Across radiology
, pathology , ophthalmology , cardiology , neurology , and oncology , recent advances demonstrate that
foundation models can achieve—or even surpass—state-of-the-art performance in segmentation , detection ,
classification , and clinical reasoning , often with dramatically reduced annotation requirements. Their ability
to leverage large-scale pretraining , multimodal alignment , and parameter-efficient adaptation positions them
as foundational infrastructure for the next generation of clinical Al. Despite this progress , the path to
widespread clinical adoption remains incomplete. Current foundation models still face significant challenges ,
including domain shift , limited interpretability , dataset biases , high computational demands , and the
difficulty of integrating large models into complex clinical ecosystems such as PACS , RIS , and EHR systems.
Benchmark studies highlight that foundation models can be extremely high quality but have variance across
populations, modalities, and clinical settings. These results highlight the need for robust external validation,
standardized evaluation guidelines, and for ongoing monitoring within a deployment to ensure reliability,
equity, and safety. Simultaneously, emerging technology directions—including personalized Al, continual
learning, federated foundation-model training, and imaging—genomics integration—provide promising
avenues forward to address these limitations.

Personalized models can personalize predictions by patient clinical trajectory, while continual learning
would enable the evolution of FMs with new data, emerging diseases, and changing clinical practices.
Federated and privacy-preserving strategies are crucial for supporting integrated multi-institutional
collaborations without introducing sensitive patient data, and multimodal reasoning holds promise for richer
diagnostic insights through integration of imaging with biological, textual, and temporal information. These
advances all suggest a future where foundation models take their place as integral parts of precision medicine:
customizable, explainable, clinically informed Al systems that can help with diagnosis, prognosis, therapeutic
planning, and long-term, individualized treatment. It will take progress not only on model architecture, but also
on data governance, regulatory frameworks, the pathways to clinical integration, and human-centered design
to achieve this vision. Foundation models represent a paradigm shift in medical imaging and hold great
potential for scalable, generalizable, and patient-centric Al. In this review, we summarize, inter alia, the
architectural advancements, popular models, research patterns, and challenges of translational implementation
with future prospects, and a guidance to help researchers, clinicians and developers to enable the safe, equitable,
and clinically relevant application of foundation-model based medical imaging to make good use of this rapidly
evolving paradigm.

In the future, the next generation of foundation medical imaging models will likely transition away from
static general-purpose architectures in the form of static models in general to dynamic systems which are
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context-aware and with learning from data. However, as health care environments constantly change—new
imaging technologies, population shifts, and newly emergent diseases—foundation models must develop a
mechanism for safe, real-time updating. Ongoing improvements in continual learning, test-time adaptation,
and uncertainty-aware refinement of model will be pivotal to ensure deployed systems endure in the clinical
future. Harmonization of training on the global datasets in future research will be key to enhance the diversity
of populations while dealing with the issues of fairness and bias on underrepresented groups of people. Another
large frontier in biointegration deals with multimodal biological data. The alignment between imaging,
genomics, proteomics, metabolomics, and longitudinal physiological data allows for a new window into
disease mechanisms, and personalised treatment response from patients. Vision—language—omics foundation
models may constitute the core of next Gen precision medicine platforms, and for advanced phenotyping and
predictive models that map the complete biological complexity of each patient. Last but not least, sustainable
clinical utilization will demand new development efforts in computational efficiency, governance, and
regulatory compliance. Lightweight, distilled versions of foundation models will be required to be developed
for implementation under resource constraints and on edge devices, such as in portable ultrasound scanners.
As a policy matter, transparent reporting standards, robust safety testing, and responsible data sharing
mechanisms will determine the long-term acceptance and impact of these technologies. Given such coordinated
steps across model design, infrastructure, and clinical collaboration, foundation models have the potential to
be essential, trusted elements of global healthcare systems.
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