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 Foundation models (FMs) are revolutionizing medical imaging by transitioning from task-
specific algorithms to large-scale , generalizable systems that can learn from a broad range of 
multimodal data. Recent advances in these fields—transformer-based visual encoders , 
promptable segmentation architectures , vision–language models , and parameter-efficient fine-
tuning—have resulted in improved performance among segmentation , detection , classification 
and report generation techniques in a variety of modalities such as MRI , CT , ultrasound , X-
ray , endoscopy , and digital pathology. Domain specific FMs (including prostate MRI, brain 
MRI , retinal , ultrasound and pathology models) have proved to be effective in providing high 
label efficiency and competitive or better performance with the mainstream deep learning 
models , in particular under low-annotation conditions. Trends in the research emphasize such 
techniques as large-scale pretraining, multimodal integration , cross-task generalization , data-
efficient learning , and the development of universal feature encoders. Simultaneously , 
extensive benchmarking and external validation indicate performance variability , motivating 
the continued development of standardized evaluation protocols. Adoption by clinical practice 
has been restricted because of interpretability , bias, workflow integration, computational 
requirements , and regulatory uncertainty. New options such as personalizable AI , continual 
learning , federated model adaptation , and imaging–genomics integration , stand out to make 
FMs key for the future of precision medicine. This article consolidates architectural , pioneering 
foundation models , clinical evaluation , and translational advancements , drawing upon the 
current context and future direction of foundation-model medical imaging. 
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1. INTRODUCTION   

Foundation models (FMs) have been a disruptive paradigm of AI , where focus moves away from task-
driven pipelines to large pre-trained and generalizable to a wide variety of clinical tasks , modalities, and data 
types. This shift is particularly powerful in medical imaging. Historically , medical image analysis has been 
performed using models trained on a constrained set of problems – organ segmentation , lesion diagnosis and 
disease identification , for example – as these require large datasets of annotated images with heavy dependence 
on the expert’s knowledge. The advance of the FMs , however , has shifted the focus of medical image analysis 
towards unified , multimodal and multitask models that learn from large volumes of highly heterogeneous 
medical and non-medical data and rapidly learn new tasks with low supervised workload [1] , [2] , [3]. 

Recent architectural advances (e.g. , transformer-based visual encoders , vision–language models , 
promptable segmentation , SAM) have increased the representational power of medical AI by allowing for 
cross-modality reasoning, robust feature extraction, and improved generalization over institutions and 
populations. There is a growing emphasis on domain-specific FMs , with systems for prostate MRI , brain MRI 
, retinal images , chest radiographs, ultrasound, endoscopy , pathology and ECG interpretation outperforming 
traditional approaches especially in regions lacking labels [4] , [5] , [6]. 

Simultaneously , multimodal and multitask learning is becoming extensively used in the research 
community , as FMs combine imaging with clinical notes , laboratory data, genomics , and physiological 
information to help more complete diagnosis and prognosis modelling [7] , [8]. Self-supervised learning , few-
shot learning , and parameter-efficient fine-tuning are enabling unprecedented label efficiency , while federated 
learning and privacy-preserving frameworks offer pathways for large-scale , multi-institutional model 
development without compromising patient confidentiality [9] , [10] , [11]. 

Notwithstanding such progress , clinical translation remains limited. Obstacles include interpretability , 
bias , regulatory uncertainty , computational constraints , and challenges in integrating FMs into real-world 
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workflows such as PACS, RIS, and EHR systems [12] , [13]. Initial clinical evaluations show significant zero-
shot and few-shot performance yet display variation across populations and modalities, highlighting the 
importance of rigorous benchmarking and external validation [14]. 

At the frontier , emerging opportunities such as personalized AI , continual learning , federated FM 
adaptation , and imaging–genomics integration are positioning FMs as major enablers of next-
generationprecision medicine. These directions move beyond static , one-size-fits-all systems toward models 
that evolve with clinical practice, adapt to individual patient trajectories , and provide real-time , context-aware 
decision support [15] , [16]. 

This review synthesizes recent architectural advances , leading foundation model systems , major research 
trends , clinical evaluation practices , and emerging opportunities for personalized and continual-learning 
medical AI. By integrating insights across modalities , specialties , and methodological innovations , it provides 
a comprehensive perspective on the evolving landscape of foundation models in medical imaging and 
highlights key challenges and research directions necessary to achieve safe , equitable , and clinically effective 
deployment. This review focuses on vision-based , vision–language , and multimodal foundation models for 
medical imaging and clinical imaging workflows , and does not aim to comprehensively cover non-imaging 
large language model applications such as drug discovery or purely textual clinical decision support. 

This review makes four key contributions. (1) It provides a consolidated taxonomy of foundation models 
in medical imaging , spanning general-purpose vision–language models and specialized medical-domain FMs 
across radiology , pathology , ophthalmology , ultrasound , ECG , and EHR applications. (2) It synthesizes 
recent architectural advances—including transformer backbones , multimodal and self-supervised pretraining 
, promptable segmentation , and parameter-efficient adaptation—and links them to major research trends. (3) 
It critically evaluates current clinical adoption , benchmarking practices , and translational barriers such as 
interpretability , bias , workflow integration , and regulatory challenges. (4) It outlines emerging directions for 
personalized AI , continual learning , federated collaboration , and multimodal clinical reasoning , offering a 
forward-looking agenda for safe and effective FM deployment in precision medicine.  

2. LITERATURE SEARCH AND REVIEW METHODOLOGY 

This comprehensive review synthesizes recent research on vision and multimodal foundation models 
(FMs) in medical imaging. The methodological approach follows structured narrative review practices 
commonly adopted in contemporary AI-in-medicine surveys , emphasizing breadth of coverage , conceptual 
synthesis , and translational relevance rather than exhaustive quantitative aggregation  [17] , [13]. 

2.1 Search Strategy and Sources 

A structured literature search was conducted across Scopus, PubMed , IEEE Xplore , and Web of 
Science , covering publications from 2019 to 2026. The search combined keywords and phrases including 
foundation model, vision-language model , medical imaging foundation models ,  multimodal AI , zero-shot 
learning ,pretraining , and clinical adoption. This strategy was designed to capture both methodological 
advances and clinically oriented studies , and is consistent with search protocols used in recent surveys of 
multimodal and vision–language foundation models [18]. Additional relevant articles were identified through 
citation snowballing and cross-referencing of key review papers , following established study selection 
practices [19]. 

2.2 Inclusion Criteria 

Studies were included if they: 

1. Investigated foundation models , large vision models , or vision–language models applied to medical 
imaging. 

2. Reported contributions related to model architecture , large-scale pretraining , adaptation strategies , 
multimodal reasoning , evaluation , or clinical translation. 

3. Provided quantitative results or qualitative analysis relevant to medical imaging tasks or clinical 
workflows. 

These criteria are aligned with inclusion practices adopted in recent foundation-model-focused medical 
imaging reviews [20]. 
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2.3 Exclusion Criteria 

Studies were excluded if they: 

• Focused exclusively on non-medical applications of foundation models , 
• Addressed traditional deep learning approaches without foundation-model characteristics , 
• Lacked accessible full text , or 
• Were not published in English. 

2.4 Study Selection Approach 

Study selection was conducted in two stages. First , titles and abstracts were screened to remove clearly 
irrelevant publications. Second , full-text assessment was performed to evaluate relevance with respect to 
foundation-model architecture , multimodal integration , evaluation methodology , and translational potential. 
This staged screening process follows established practices for structured narrative reviews in foundation-
model and healthcare AI research [13]. 

2.5 Data Extraction and Synthesis 

From each included study , information was extracted regarding: 

• Model category (vision-only , vision–language , or multimodal foundation model) , 
• Architectural design (e.g. , transformer-based , SAM-derived , self-supervised , or parameter-efficient 

fine-tuning approaches) , 
• Pretraining scale , modality coverage , and data diversity , 
• Targeted downstream tasks (e.g. , segmentation , detection , report generation , or clinical reasoning) 

, and 
• Clinical relevance , adoption barriers , and translational readiness. 

The extracted findings were synthesized qualitatively to identify recurring architectural patterns , 
emerging research trends , evaluation practices , and open challenges , following synthesis strategies commonly 
used in recent foundation-model surveys in medical imaging [17]. 

2.6  Methodological Limitations 

This review adopts a structured narrative approach rather than a fully systematic or meta-analytic 
methodology , which may introduce selection bias and limits the ability to quantitatively compare performance 
across studies. Although multiple major bibliographic databases were searched and citation snowballing was 
employed , it is possible that relevant studies—particularly preprints , non-English publications , or rapidly 
evolving industrial reports—were not captured. In addition , reported performance metrics across foundation 
model studies vary substantially in terms of datasets , evaluation protocols , and clinical contexts , which 
constrains direct cross-study comparability. Finally , many included works focus on proof-of-concept 
evaluations or retrospective analyses , and therefore their findings may not fully reflect real-world clinical 
deployment conditions. These limitations highlight the need for standardized benchmarks , transparent 
reporting practices , and prospective clinical validation in future foundation model research. 

3. FOUNDATIONS OF VISION AND MULTIMODAL FOUNDATION MODELS 

Foundation models (FMs) represent a major conceptual shift in artificial intelligence. Unlike traditional 
deep learning systems trained for narrow , task-specific purposes , FMs are large-scale architectures pre-trained 
on extensive datasets that enable strong generalization across diverse downstream applications. Their 
scalability , robust representation learning , and adaptability to multimodality have positioned them as central 
technologies in modern medical AI , supporting vision-based tasks , clinical text processing , and integrated 
healthcare analytics [21] , [22] , [23]. 
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Two broad categories of FMs are now prominent in healthcare: general-purpose foundation models , 
originally developed for natural images or language; and medical-specific foundation models , pre-trained 
directly on clinical data across modalities such as MRI , CT , ultrasound , ECG , EHR , or whole-slide pathology 
images. Figure 1 shows general-purpose and medical-specific models across imaging modalities. 

 

 
Figure 1: Taxonomy of Vision , Vision–Language , and Multimodal Foundation Models in Medical 

Imaging. 

3.1 General-Purpose Foundation Models in Medical Imaging 

General-purpose models , although not designed for clinical use , have been adapted for medical imaging 
and multimodal healthcare applications. 

• CLIP and SigLIP. 

CLIP and SigLIP are large-scale image–text alignment models that demonstrate strong performance in 
natural image understanding. However , studies have shown that these models generalize poorly to medical 
domains such as skin imaging , endoscopy , and oral diagnostics without additional domain-specific pretraining 
, due to the substantial visual distribution shift between natural and clinical imagery [24]. 

• Large Language Models (LLMs): GPT , BERT , PaLM , LLaMA. 

Transformer-based LLMs have been widely used to summarize clinical notes , assist tumor board 
discussions , and support decision-making workflows. Their ability to encode medical knowledge contextually 
makes them powerful tools for downstream tasks in EHR analysis , clinical reasoning , and multimodal report 
generation  [25]. 

• Segment Anything Model (SAM). 

SAM introduced prompt-based universal segmentation capabilities. Although powerful in natural images 
, SAM underperforms in medical contexts—particularly for multimodal MRI or CT segmentation—unless 
enhanced through medical-domain adaptation mechanisms such as volumetric adapters or medical-specific 
fine-tuning [26] , [27]. 

Overall , general-purpose models provide strong priors but require substantial adaptation to achieve 
clinically reliable performance. 
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3.2 Medical-Specific Foundation Models 

Medical-specific foundation models (FMs) address many of the limitations of general-purpose models by 
explicitly incorporating domain knowledge , clinical priors , and modality-specific structural characteristics 
during pretraining. Unlike natural-image-based FMs , these models are trained directly on large-scale medical 
datasets , enabling them to capture anatomical regularities , disease-specific patterns , and imaging physics that 
are essential for reliable clinical performance. 

Modality- and Organ-Specific Foundation Models 

A growing body of work has focused on developing FMs tailored to specific imaging modalities or 
anatomical systems: 

• PCaSAM (Prostate MRI): A multimodal MRI foundation model designed for prostate cancer 
analysis , demonstrating improved segmentation accuracy and enhanced PI-RADS scoring across 
external validation cohorts [6]. 

• SAM-Brain3D (Brain MRI): A brain-specific FM trained on more than 66 ,000 labeled MRI 
volumes , achieving state-of-the-art performance across multiple brain sub-modalities and disease-
related segmentation tasks [27]. 

• CT-based Foundation Models: Scalable CT foundation models have been proposed to support 
multi-organ analysis and cross-task generalization , enabling effective transfer across diverse 
anatomical regions and clinical tasks [4]. 

• Retinal and Endoscopic Foundation Models: Medical-domain foundation models have also been 
developed for retinal imaging and gastrointestinal endoscopy , supporting disease detection , 
segmentation , and classification with improved label efficiency and robustness compared with task-
specific baselines [4]. 

• USFM (Ultrasound): A universal ultrasound foundation model trained on more than two million 
images across organs and acquisition protocols , demonstrating strong label efficiency and cross-organ 
generalization [4]. 

• KED (ECG Foundation Model): A large-scale ECG FM capable of zero-shot interpretation across 
cardiac rhythms and abnormalities , achieving cardiologist-level diagnostic performance and 
providing interpretable explanations  [28]. 

• Ark (Chest X-ray): A radiography foundation model trained on large-scale public datasets , 
outperforming proprietary chest X-ray models in classification , localization , and segmentation tasks 
while maintaining strong generalization across datasets [29].  

Pathology Foundation Models 

Histopathology has emerged as one of the fastest-growing application domains for medical foundation 
models , driven by the availability of large whole-slide image datasets and the need for robust generalization 
across staining protocols and scanners: 

• CONCH , UNI , and Virchow2: These pathology foundation models achieve high performance in 
colorectal cancer microsatellite instability prediction and demonstrate strong robustness to stain 
variation and resolution differences. CONCH , in particular , reported balanced accuracies exceeding 
0.77 on external validation datasets [30]. 

• Clinical Histopathology Imaging Evaluation Foundation Models: Large-scale pathology FMs 
enable consistent and generalizable cancer characterization across multiple tumor types and datasets 
, supporting both diagnostic and prognostic workflows [31]. 

Graph-Based and Multimodal Foundation Models 

Beyond image-centric architectures , foundation models are increasingly extended to structured and 
multimodal clinical data: 
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• Foundation Model for Functional Connectivity: A graph transformer-based FM designed for fMRI 
analysis , outperforming multiple competing approaches in cognitive and psychiatric prediction tasks 
by modeling complex brain connectivity patterns [32]. 

• EHR Foundation Model (FM-SM): A foundation model trained on large-scale electronic health 
record data , demonstrating strong hospital-to-hospital transferability and improved performance in 
low-label settings with minimal fine-tuning [23]. 

Collectively , these medical-specific foundation models illustrate how domain-aware pretraining enables 
the learning of anatomical structures , physiological relationships , and modality-dependent invariances that 
are difficult—or impossible—to acquire from natural-image or generic multimodal data alone. Their success 
underscores the importance of medical-domain data , task alignment , and modality-specific design in 
achieving clinically reliable and generalizable foundation-model-based AI systems. 

3.3 Evidence of Effectiveness in Real Clinical Studies 

Medical foundation models have demonstrated robust generalization , label efficiency , and clinical 
reliability: 

• PCaSAM improved PI-RADS scoring by 8.3–8.9% and achieved DSC > 0.70 on external datasets [6]. 
• SAM-Brain3D outperformed state-of-the-art baselines across 14 MRI sub-modalities [27]. 
• USFM maintained strong multi-organ performance even with only 20% labeled data [4]. 
• KED matched experienced cardiologists in zero-shot clinical ECG interpretation [28]. 
• Ark surpassed Google’s CXR-FM in chest X-ray classification , localization , and segmentation [29]. 
• CONCH achieved pathologist-validated interpretability scores of up to 92.4% [30]. 
• FM-SM provided transferable EHR modeling with minimal data requirements [23]. 

These results confirm the superiority of medical-specific FMs for many real-world clinical applications. 

3.4 Comparative Insights and Limitations 

• General-purpose models (CLIP , SigLIP , SAM) offer broad generalization but show limited 
performance in medical imaging without domain adaptation [24] , [26]. 

• Medical-specific models typically achieve higher diagnostic accuracy , segmentation quality , and 
generalization due to domain-tailored pretraining [4]. 

• Parameter-efficient fine-tuning improves adaptation for low-resource clinical settings [33] , [34]. 
• Many models remain limited to their primary modality and face challenges when generalizing to 

cross-domain or cross-task settings. 

Table 1 shows a summary of several foundation models. 
 

Table 1.  Selected Foundation Models and Their Effectiveness. 

Model (Reference) Domain / Modality Key Findings 
CLIP, SigLIP [24] General-purpose Limited performance on clinical images 

PCaSAM [6] Prostate MRI Higher DSC, improved PI-RADS score 
SAM-Brain3D [27] Brain MRI Multi-submodality state-of-the-art segmentation 

USFM [4] Ultrasound High robustness, strong label efficiency 
KED [28] ECG Zero-shot, cardiologist-level performance 
Ark [29] Chest X-ray Outperforms Google CXR-FM 

CONCH / UNI / Virchow2 
[30] 

Pathology High accuracy, validated interpretability 

FM-SM [23] EHR Strong transferability in low-label settings 
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4. ARCHITECTURAL ADVANCES IN MEDICAL FOUNDATION MODELS 

Recent architectural developments in FMs have significantly reshaped the landscape of medical image 
analysis. Modern FMs are pre-trained on large-scale heterogeneous datasets and subsequently adapted to a 
wide spectrum of downstream clinical tasks with minimal labeled data. This shift has enabled stronger cross-
domain generalization , improved robustness , and enhanced multimodal integration across segmentation , 
classification , detection , and localization tasks  [35] , [36]. Evolution of medical foundation model 
architectures from CNN-based designs to transformers , promptable segmentation , and multimodal foundation 
models , highlighting key adaptation mechanisms is illustrated in Figure 2. 

 

 
Figure 2: Evolution of Medical Foundation Model Architectures. 

4.1 Transformer-Based and Hierarchical Vision Models 
Vision Transformers (ViT) and hierarchical models like Swin Transformers are the preliminary works in 

the direction of general medical FMs. They have the ability to model long-range global dependencies and thus 
to model the anatomy structure and pathological variation more effectively. To the above end , Swin 
Transformers (with hierarchical shifted windows) can further increase efficiency and scalability for high 
resolution medical images [37] , [38]. These architectures are also robust for multimodal learning , assisting 
in incorporating imaging with complementary data , including clinical metadata. 

4.2 Prompt-Based Segmentation Models: Adaptation of SAM for Medicine 
SAM adaptation for the context of medicine. The Segment Anything Model (SAM) has brought prompt-

based segmentation to FM design. Although SAM is able to generalize well to natural images , its application 
to medical images is limited by the appearance characteristic of the modality specific to these images. To fill 
in the existing gaps , the recent works like 3DSAM-adapter adopt volumetric computation , spatial adapters 
and parameter-efficient tuning methods to expand the possibilities of SAM in the case of CT or MRI 
segmentation tasks [39]. The adaptations show how promptable segmentation paradigms can effectively be 
scaled and transferred to clinical imaging. 

4.3 Domain-Specialized Medical Foundation Models 
In addition to generalized models , domain-specific FMs have also developed to address the specific 

requirements of medical imaging. UniverSeg presents a flexible , label-efficient segmentation scheme that is 
robust for many kinds of organs and modalities with few or no labels. Likewise , PCaSAM demonstrates 
competitive or superior performance on both internal and external validation cohorts compared with generalist 
FMs. These specific models demonstrate that the inclusion of medical-specific priors can be successful in FM 
architectures. 

4.4 Multimodal and Cross-Modal Architectures 
One of the hallmarks of the new generation of medical FMs is their utilization of non-image modalities , 

which allows a more interpretative clinical picture. Multimodal foundation models in medical imaging combine 
medical imaging with patient history , ECG signals, and radiology reports to optimize diagnostic reasoning [8] 
,  [36]. Novel approaches like MedLAM , a self-supervised 3D anatomical localization model and MedLSAM 
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, a combined model of MedLAM and SAM , illustrate how multimodal synergy can alleviate some annotations 
and help make a more effective global approach in cases of complex volumetric data [5]. 

4.5 Self-Supervised Learning and Parameter-Efficient Adaptation 
Self-supervised learning (SSL) has been developed for FM pretraining and provides an open platform for 

training on unlabeled inputs to learn semantically enriched representations. RadioDINO demonstrates that 
contrastive and self-distillation methods also yield robust features that outperform classical supervised methods 
in the classification and segmentation problems [40]. 

Parameter-efficient fine-tuning (PEFT) enables efficient next stage adaptation. Methods like Few-Shot 
Efficient Fine-Tuning (FSEFT) and Embedded Prompt Tuning (EPT) create little collections of learnable 
parameters — adapter or prompt tokens — to reposition FM representations for particular tasks to reduce 
computation to a minimum while keeping a high level of accuracy  [33] ,  [34]. 

4.6 Generative and Hybrid Architectures 
Generative and hybrid architectures are more and more used in FM pipelines. Autoencoder–GAN–

transformer hybrid models enhance synthetic image plausibility , enhance high-level image enhancement and 
text-based interpretation , contributing to the transparency in diagnostic reporting  [41]. Diffusion based 
architectures are also becoming effective for denoising , reconstruction and data augmentation. In the context 
of medical object detection , hybrid architectures that integrate YOLO , vision transformers and advanced 
attention mechanisms (e.g. , CSP , SPP , BiFPN) have been shown to have enhanced localization performance 
and efficiency in lesion detection tasks [42]. 

4.7 Challenges and Open Technical Gaps 
While there have been significant advancements , there are still a number of technical issues to overcome. 

The general-purpose vision FMs suffer from potential underperformance on medical databases because of the 
gaps in their domain and the lack of medical priors , and thus may need to use domain adapted training or 
structural modification [35]. Scarcity , inconsistent validation protocols and a lack of large multimodal medical 
data sets also limit scalability and cross-institutional generalization [37]. It is important that such gaps be 
addressed as clinically reliable FM deployment is a goal. Key architectural advances in medical foundation 
models are represented in Table 2. 

 
 
 

Table 2.  Key Architectural Advances in Medical Foundation Models. 

Model / Ref. Domain / 
Application 

Core Architectural 
Contribution 

Remarks 

ViT, Swin 
Transformer [37], 

[38] 

Segmentation, 
classification 

Global and hierarchical 
attention 

Strong generalization; 
multimodal compatibility 

SAM → 3D 
Adapters [39] 

Organ / tumor 
segmentation 

Prompt-based 
segmentation; 

volumetric tuning 

Efficient adaptation; domain 
gap constraints 

UniverSeg [5] Multi-organ tasks Domain-specialized 
segmentation 

Outperforms task-specific 
baselines 

PCaSAM [6] Prostate cancer Multimodal MRI 
segmentation 

Strong internal/external 
generalization 

MedLAM / 
MedLSAM [5] 

Volumetric 
imaging 

3D localization + SAM 
integration 

Reduces annotation burden; 
competitive performance 

RadioDINO (SSL) 
[40] 

Classification, 
segmentation 

Radiomics-aware self-
supervision 

Greater robustness vs 
supervised learning 

FSEFT [33] Few-shot 
segmentation 

Parameter-efficient fine-
tuning 

Resource-efficient; high 
accuracy 

EPT [34] Few-shot 
segmentation 

Embedded prompt 
tuning 

Improves calibration and 
performance 
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GAN / AE / 
Diffusion Hybrids 

[41] 

Synthetic data, 
enhancement 

Generative modeling + 
attention 

Better realism; interpretable 
outputs 

YOLO + Hybrid 
Attention [42] 

Lesion / object 
detection 

CSP, SPP, BiFPN + ViT 
attention 

High precision; fast 
inference 

5.  MAJOR RESEARCH TRENDS IN MEDICAL IMAGING FOUNDATION 
MODELS 

Foundation models have rapidly become a core research direction in medical imaging , enabling 
improvements in diagnostic accuracy , workflow automation , and clinical decision-making across MRI , CT , 
X-ray , ultrasound , endoscopy , retinal imaging , dermoscopy , and pathology [1]  , [2] ,  [43] , [44]. Current 
research trends center on pretraining scale , multimodal capabilities , data efficiency , robustness , and 
adaptation strategies , with growing emphasis on clinical translation. 

5.1 Large-Scale Pretraining and Cross-Modality Generalization 
A dominant trend is pretraining FMs on extremely large , heterogeneous imaging datasets to develop rich 

visual representations that transfer effectively to downstream tasks with minimal labeled data [7] , [45]. This 
enables broad generalization across modalities and pathologies. 

Alongside generalist models , there is growing momentum toward modality-specific FMs that address 
the physics , artifacts , and diagnostic requirements of each modality—for example , ultrasound [45] , CT  [5] 
, endoscopy [4] , and retinal imaging [24]. 

Research also explores adapting general-purpose vision FMs—such as SAM , ViT , and CLIP—for 
medical tasks through architectural modification or domain-specific pretraining [46] , [47] , balancing the 
benefits of large natural-image pretraining against fully medical-native models. 

5.2 Expanding Applications and Model Capabilities 
FMs now achieve expert-level or near-expert performance in core clinical tasks including organ 

delineation , tumor detection , and multidisease classification [43] ,  [46]. Models such as SAM-Med2D , 
MedSAM , and EyeCLIP demonstrate broad applicability across imaging types. 

Emerging multimodal FMs integrate images , text , and clinical metadata , supporting cross-task 
generalization and unified pipelines for detection , segmentation , diagnosis , and report generation [7] , [48]. 
FMs are increasingly used as universal feature encoders , supplying robust high-level representations that 
benefit tasks ranging from tumor classification to disease progression modeling  [47]. 

5.3 Data Efficiency and Robustness to Variability 
Through self-supervision , zero-shot , and few-shot learning , FMs consistently reduce reliance on large 

annotated datasets. FMs also show increased resilience to real-world variation , including equipment 
differences , imaging protocols , annotation variability , and patient diversity. This robustness is critical for 
clinical deployment , particularly across multi-center settings. Self-supervised , semi-supervised , and few-shot 
learning remain major research directions aimed at mitigating data annotation challenges and improving 
generalization under data scarcity [2] , [17] , [43]. 

5.4 Model Adaptation , Evaluation , and Open Science 
A key research question is whether medical FMs should be adapted from large natural-image models or 

built entirely from medical data. Evidence supports both approaches , with some studies demonstrating benefits 
from general-purpose pretraining for medical segmentation [39]. 

Given the diversity of tasks and modalities , the field is calling for unified evaluation frameworks and 
benchmarks to systematically assess model robustness and cross-domain generalization  [2] , [17]. Large-scale 
public datasets such as GastroNet-5M and DIAS are accelerating model development and enabling 
reproducibility [17] , [45] , reflecting a strong trend toward open science. 

5.5 Challenges and the Road Ahead 
Clinical adoption requires interpretable and trustworthy AI. Explainability , fairness , and ethical 

deployment remain key research challenges [43]. Integration of imaging with genomics , proteomics , and other 
molecular data represents an emerging frontier aimed at uncovering biological mechanisms and enabling 
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precision medicine [7] ,  [47]. High-variability modalities such as ultrasound , photographic imaging , and 
endoscopy highlight the need for specialized architectures to overcome noise , artifacts , and domain gaps [49] 
, [50]. 

Efficiency , robustness to degraded image quality , edge deployment , and workflow integration remain 
practical hurdles for real-world deployment. Table 3 illustrates the trends in medical imaging foundation 
models. 

Table 3. Key Trends in Medical Imaging Foundation Models. 

Trend / Theme (Ref.) Core Description Implications 
Large-scale pretraining [7], 

[45] 
Massive datasets enabling broad 

generalization 
Improved cross-modality transfer 

and scalability 
Modality-specific FMs [4], 

[24], [45] 
Tailored models for CT, 

ultrasound, retinal imaging, 
endoscopy 

Better robustness to modality-
specific artifacts 

Transfer learning and 
adaptation [39], [46], [47] 

Adapting SAM, ViT, and CLIP 
for medical tasks 

Balances general-purpose 
pretraining with medical 

specificity 
Data efficiency and 

robustness [2], [17], [43] 
Few-shot learning and resilience 

to domain shifts 
Reduced annotation cost; 

improved multi-center 
generalization 

Benchmarking and open 
science [17], [45] 

Public datasets and standardized 
evaluation protocols 

Improved reproducibility and fair 
comparison 

Interpretability and ethics 
[43] 

Explainability, fairness, and 
responsible deployment 

Increased clinical trust and 
adoption 

Multimodal and genomic 
integration [7], [47] 

Imaging–genomics fusion for 
precision medicine 

Deeper biological insight and 
personalized care 

Real-world deployment 
[49], [50] 

Workflow integration, robustness, 
and edge deployment 

Practical clinical feasibility 

 
Overall , research in medical imaging foundation models is advancing rapidly toward scalable , 

multimodal , data-efficient , and clinically aligned systems. Core trends include large-scale pretraining , 
modality-specific design , improved robustness , and ethical deployment. The field is steadily moving toward 
integrated , explainable models capable of supporting real-world clinical workflows at scale. 

6. CLINICAL ADOPTION AND EVALUATION OF MEDICAL FOUNDATION 
MODELS 

Although FMs are still at an early stage of clinical deployment , interest in their translational potential 
has accelerated across radiology , pathology , ophthalmology , neurology , and oncology. Their multimodal 
and multitask capabilities—spanning text , images , and structured data—support applications in diagnosis , 
treatment planning , report generation , and automated image analysis [3] ,  [12] , [51]. Figure 3 demonstrates 
clinical translation pipeline of foundation models from pretraining to deployment , highlighting key barriers 
and mitigation strategies for real-world adoption.  

 

 
Figure 3: Clinical Translation Pipeline of Foundation Models. 
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6.1 Early Clinical Applications and Demonstrated Potential 
FMs are increasingly evaluated as generalist backbones for a variety of clinical tasks: 

• In digital pathology and oncology , FM-based systems have achieved high diagnostic accuracy and , in 
some settings , matched or exceeded pathologist performance after limited fine-tuning [3] , [51] , [52]. 

• In radiology , several foundation-model-based chest X-ray interpreters and multimodal diagnostic 
assistants have demonstrated promising performance in image interpretation and report generation , 
although routine clinical integration remains limited  [12]. 

• Across multiple imaging domains , FMs leverage transfer learning to deliver strong performance even 
where labeled data are scarce , highlighting their potential for data-limited specialties and rare diseases 
[6] ,  [52]. 

These results support the notion that FMs can serve as versatile , reusable components in clinical AI 
pipelines—provided their behavior is rigorously evaluated and contextually constrained. 

6.2 Evaluation Practices and Benchmarking Trends 
A key translational trend is the shift from purely algorithmic metrics toward systematic , comparative 

evaluation: 

• Studies increasingly compare FMs against strong task-specific baselines , particularly in segmentation 
and histopathology , to determine whether FM generality translates into real clinical benefit [14] , [52] , 
[53]. 

• Zero-shot and few-shot evaluation protocols are commonly employed to probe generalization to unseen 
datasets , institutions , and tasks [17] , [52]. These analyses often reveal that while FMs are highly flexible 
, performance can be uneven across populations and tasks. 

• Some evaluations have shown that non-foundational , domain-specific models outperform general-
purpose FMs in challenging histopathology tasks , emphasizing the importance of high-quality , 
multimodal medical data and thorough expert validation [14]. 

Overall , the community is moving toward rigorous benchmarking and reproducibility , recognizing that 
FM performance must be assessed under realistic clinical conditions , not just curated research datasets. 

6.3 Barriers to Clinical Integration 
Despite promising technical results , widespread clinical adoption remains limited due to multi-layered 

challenges: 

• Interpretability and trust. Limited transparency and difficulty explaining FM decisions continue to 
erode clinician trust and impede regulatory acceptance [3] ,  [13]. 

• Bias and generalizability. FMs are sensitive to biases in training data and may not generalize across 
underrepresented populations , institutions , or imaging protocols [13] ,  [54]. 

• Workflow and infrastructure integration. Practical integration with PACS/RIS and EHR platforms 
remains non-trivial. Many FM prototypes operate as stand-alone research tools rather than seamlessly 
embedded components [12] , [55]. 

• Computational and resource constraints. Training and deploying large FMs require considerable 
computational resources and extensive curated datasets , which can exacerbate inequities between well-
funded centers and resource-limited institutions [54] , [55]. Regulatory and safety concerns. 
Regulatory frameworks have yet to fully address FMs. Challenges include lack of formal approvals , 
limited external validation , and safety risks such as hallucinations and automation bias [12] ,  [53]. 

• Ethical and societal issues. Persistent concerns include privacy , fairness , and dependence on 
proprietary FMs controlled by a small number of commercial entities [54] , [56]. 

6.4 Emerging Solutions and Directions for Clinical Translation 
To overcome these barriers , several strategies are being actively explored: 
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• Human-in-the-loop and hybrid decision-making. Human-in-the-loop frameworks aim to keep 
clinicians central in the decision process , using FMs as assistive tools rather than autonomous decision-
makers [12]. 

• Federated and privacy-preserving learning. Federated learning and secure model-sharing paradigms 
are considered for multi-institutional FM training without centralizing sensitive data [12]. 

• Continuous monitoring and national registries. Proposals for ongoing performance monitoring , 
equity-focused design , and national registries seek to track real-world FM behavior and identify 
disparities over time [12] ,  [53]. 

• Model compression and lightweight deployment. Distillation and compression strategies are being 
developed to reduce computational demands. Integration into widely used platforms—such as QuPath 
for digital pathology—facilitates pragmatic adoption in routine workflows [55]. 

• New reporting and evaluation standards. Recent work calls for standardized reporting guidelines , 
more robust external validation , and closer collaboration between AI researchers , clinicians , and 
regulators to ensure safe , equitable deployment  [53] , [56]. 

Table 4 demonstrates several trends and challenges in clinical adoption of foundation models.  
 

Table 4. Trends and Challenges in Clinical Adoption of Foundation Models. 

Clinical Theme 
(Reference) 

Core Observations Implications for Adoption 

High diagnostic accuracy 
[3], [51], [52] 

FMs can match or exceed clinician 
performance after fine-tuning 

Strong translational potential, 
but requires validation 

Need for rigorous 
evaluation [14], [17], [52], 

[53] 

Benchmarking vs strong baselines; zero- 
and few-shot testing; external validation 

Ensures reliable and 
reproducible clinical 

performance 
Integration barriers [12], 

[13], [55] 
Workflow incompatibility; limited 

regulatory approval; low clinician trust 
Slows routine deployment in 

clinical environments 
Data and compute demands 

[54], [55] 
Large, diverse datasets and high 

computational requirements; risk of 
inequity 

Limits adoption in resource-
constrained settings 

Ethical and societal 
concerns [54], [56] 

Privacy, bias, explainability, dependence 
on proprietary models 

Necessitates governance and 
ethical oversight 

Emerging mitigation 
strategies [12], [53], [55], 

[56] 

Human-in-the-loop, federated learning, 
lightweight models, registries, standards 

Enables safer and more 
scalable clinical translation 

7. FUTURE DIRECTIONS: PERSONALIZED , CONTINUAL , AND 
FEDERATED FM-BASED AI 

7.1 Generalization as a Basis for Personalization 
By leveraging diverse multimodal datasets and self-supervised objectives , FMs can generalize across a 

wide range of imaging modalities—including SPECT , PET , MRI , and CT—without requiring full retraining 
for every new task [16] ,  [20] , [57]. Their ability to support zero-shot and few-shot learning makes them 
particularly valuable in data-scarce settings such as rare diseases and novel theranostic applications , where 
annotated cohorts are inherently limited  [57]. 

This broad generalization capability provides a strong foundation for patient-specific adaptation , where 
models can be tuned or conditioned on individual characteristics while retaining global clinical knowledge. 

7.2 Emerging Opportunities for Personalized AI 
A key future direction is personalized medical AI—models that integrate patient-level imaging features 

with other clinical and molecular signals to deliver individualized risk estimates , treatment recommendations 
, and prognostic trajectories. Multimodal FMs can fuse imaging data with EHRs , laboratory results , genomics 
, and physiological signals , supporting richer patient representations than imaging alone [8] , [15] , [58]. 

For example , integrating echocardiography with ECG signals , or MRI with longitudinal clinical history 
, can refine personalized cardiac diagnosis and therapy selection [8] ,  [58] . Earlier work on patient-specific 
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modeling in cardiovascular imaging already demonstrated the clinical potential of individualized parameter 
estimation [59] , and FMs are poised to scale such approaches across modalities and diseases. Large language 
models and vision–language models further enable personalized report generation and knowledge-based 
interpretation , tailoring narrative explanations and decision support to the patient’s context rather than 
producing generic outputs [20] ,  [60]. 

7.3 Continual Learning for Evolving Clinical Practice 
In real clinical environments , data distributions evolve over time due to changing protocols , emerging 

diseases , and new imaging technologies. Continual learning techniques offer a pathway for FMs to adapt 
incrementally without catastrophic forgetting. Regularization-based , memory-based , and generative replay 
strategies allow models to incorporate new tasks or cohorts while preserving performance on previously 
learned tasks [61] , [62]. A continual-learning–based COVID-19 screening system , for instance , was able to 
progressively incorporate new chest X-ray data and classification categories while maintaining high accuracy 
, demonstrating the feasibility of on-the-fly adaptation in deployed systems [61]. Expansion-based and 
generative replay methods further support long-term deployment by selectively retaining task-relevant 
knowledge and mitigating data retention issues [62].  

Combined with FMs , continual learning could support lifelong clinical AI systems that evolve alongside 
medical practice instead of remaining static after initial deployment. 

7.4 Federated and Collaborative Learning at Scale 
Federated learning complements FMs by enabling large-scale , multi-institutional collaboration without 

centralized data pooling. In this paradigm , local model updates are shared instead of raw patient data , 
addressing privacy constraints while leveraging diverse cohorts [11] , [60] , [63]. 

When combined with FMs , federated learning can: 

• Improve robustness by exposing models to heterogeneous imaging protocols and populations. 
• Support FM pretraining or adaptation across distributed centers. 
• Enable privacy-preserving continual updates as hospitals accumulate new cases  [29] ,  [63]. 

This suggests a future in which regional or global medical FMs are collaboratively trained and refined in 
a federated manner , with personalization layers added at each institution or even at the patient level. 

7.5 Multimodal , Multi-Task , and Generative Learning 
FMs naturally support multi-task learning , where tasks such as reconstruction , segmentation , detection 

, and quantification are jointly optimized. This has the potential to streamline workflows , reduce the number 
of separate models clinicians must maintain , and exploit task synergies [17] ,  [64]. 

Their multimodal capabilities , coupled with generative AI , also enable: 

• Synthetic data generation to alleviate annotation bottlenecks. 
• Modality translation (e.g. , PET from MRI) to support virtual imaging. 
• Scenario simulation for rare conditions and edge cases [57] , [60]. 

These directions enhance both model robustness and the capacity for personalized scenario exploration. 

7.6 Challenges and Research Priorities 
Despite their promise , FM-based personalized and continual-learning systems face several unresolved 

challenges: 

• Interpretability and trust. Many FM architectures remain black boxes , complicating clinical 
acceptance and regulatory approval [57] , [60]. 

• Bias and fairness. Personalized AI must avoid reinforcing existing disparities , especially when 
trained on skewed datasets [17] , [64]. 

• Privacy and governance. Even with federated learning , model updates may leak sensitive 
information if not properly secured [11] ,  [65]. 
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• Regulatory and computational constraints. High training costs , energy consumption , and evolving 
regulatory frameworks remain major barriers to widespread adoption  [60]. 

Future research should prioritize adaptive and personalized FM frameworks that combine transformer 
architectures , graph neural networks , and hybrid AI designs , while embedding explicit mechanisms for 
interpretability , uncertainty quantification , and data governance [8] ,  [60]  , [64].   Emerging opportunities 
for personalized and continual foundation models-based AI are reported in Table 5. 

Table 5. Emerging Opportunities for Personalized and Continual FM-Based AI. 

Future Opportunity 
(Reference) 

Role of Foundation Models Enabling Techniques 

Personalized AI [8], [15], 
[20], [57], [58], [60] 

Patient-specific analysis and tailored 
recommendations 

Multimodal integration; 
VLM/LLM-based interpretation 

Continual learning [61], [62] Ongoing adaptation to new data and 
tasks without forgetting 

Regularization, memory-based 
methods, generative replay 

Federated learning [11], [29], 
[60], [63], [65] 

Privacy-preserving, multi-institutional 
FM training and adaptation 

Distributed optimization; secure 
aggregation 

Multi-task and multimodal 
learning [17], [57], [60], [64] 

Joint reconstruction, segmentation, 
quantification, and data generation 

Self-supervised and generative 
modeling 

Clinical workflow 
enhancement [12], [55], [60] 

Automated reporting, case triage, and 
decision support 

Prompt engineering; VLMs; 
LLM-driven report generation 

8. CONCLUSION AND FUTURE OUTLOOK 

Foundation models have rapidly emerged as a transformative force in medical imaging , shifting the field 
from siloed , task-specific algorithms toward unified , multimodal , and adaptable AI systems. Across radiology 
, pathology , ophthalmology , cardiology , neurology , and oncology , recent advances demonstrate that 
foundation models can achieve—or even surpass—state-of-the-art performance in segmentation , detection , 
classification , and clinical reasoning , often with dramatically reduced annotation requirements. Their ability 
to leverage large-scale pretraining , multimodal alignment , and parameter-efficient adaptation positions them 
as foundational infrastructure for the next generation of clinical AI. Despite this progress , the path to 
widespread clinical adoption remains incomplete. Current foundation models still face significant challenges , 
including domain shift , limited interpretability , dataset biases , high computational demands , and the 
difficulty of integrating large models into complex clinical ecosystems such as PACS , RIS , and EHR systems. 
Benchmark studies highlight that foundation models can be extremely high quality but have variance across 
populations, modalities, and clinical settings. These results highlight the need for robust external validation, 
standardized evaluation guidelines, and for ongoing monitoring within a deployment to ensure reliability, 
equity, and safety. Simultaneously, emerging technology directions—including personalized AI, continual 
learning, federated foundation-model training, and imaging–genomics integration—provide promising 
avenues forward to address these limitations.  

Personalized models can personalize predictions by patient clinical trajectory, while continual learning 
would enable the evolution of FMs with new data, emerging diseases, and changing clinical practices. 
Federated and privacy-preserving strategies are crucial for supporting integrated multi-institutional 
collaborations without introducing sensitive patient data, and multimodal reasoning holds promise for richer 
diagnostic insights through integration of imaging with biological, textual, and temporal information. These 
advances all suggest a future where foundation models take their place as integral parts of precision medicine: 
customizable, explainable, clinically informed AI systems that can help with diagnosis, prognosis, therapeutic 
planning, and long-term, individualized treatment. It will take progress not only on model architecture, but also 
on data governance, regulatory frameworks, the pathways to clinical integration, and human-centered design 
to achieve this vision. Foundation models represent a paradigm shift in medical imaging and hold great 
potential for scalable, generalizable, and patient-centric AI. In this review, we summarize, inter alia, the 
architectural advancements, popular models, research patterns, and challenges of translational implementation 
with future prospects, and a guidance to help researchers, clinicians and developers to enable the safe, equitable, 
and clinically relevant application of foundation-model based medical imaging to make good use of this rapidly 
evolving paradigm.  

In the future, the next generation of foundation medical imaging models will likely transition away from 
static general-purpose architectures in the form of static models in general to dynamic systems which are 
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context-aware and with learning from data. However, as health care environments constantly change—new 
imaging technologies, population shifts, and newly emergent diseases—foundation models must develop a 
mechanism for safe, real-time updating. Ongoing improvements in continual learning, test-time adaptation, 
and uncertainty-aware refinement of model will be pivotal to ensure deployed systems endure in the clinical 
future. Harmonization of training on the global datasets in future research will be key to enhance the diversity 
of populations while dealing with the issues of fairness and bias on underrepresented groups of people. Another 
large frontier in biointegration deals with multimodal biological data. The alignment between imaging, 
genomics, proteomics, metabolomics, and longitudinal physiological data allows for a new window into 
disease mechanisms, and personalised treatment response from patients. Vision–language–omics foundation 
models may constitute the core of next Gen precision medicine platforms, and for advanced phenotyping and 
predictive models that map the complete biological complexity of each patient. Last but not least, sustainable 
clinical utilization will demand new development efforts in computational efficiency, governance, and 
regulatory compliance. Lightweight, distilled versions of foundation models will be required to be developed 
for implementation under resource constraints and on edge devices, such as in portable ultrasound scanners. 
As a policy matter, transparent reporting standards, robust safety testing, and responsible data sharing 
mechanisms will determine the long-term acceptance and impact of these technologies. Given such coordinated 
steps across model design, infrastructure, and clinical collaboration, foundation models have the potential to 
be essential, trusted elements of global healthcare systems. 
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