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Enabling mobile robots to navigate unpredictable and ever-changing 
environments while avoiding static and moving obstacles is a critical 
challenge for dynamic path planning. Advanced sensors have 

simplified the robot’s work by enabling it to navigate autonomously 
without human intervention. Optimal path planning in dynamic 
environments requires sophisticated algorithms considering essential 
factors such as time, energy, and distance. These problems can be 
solved using deep neural networks (DNNs) and reinforcement 

learning (RL). An artificial intelligence (AI) agent learns from reward 
signals using trial and error to identify humans' optimal behavioral 
strategies. This review paper explores how deep reinforcement 
learning (DRL) techniques can be combined with other path-planning 
techniques to enhance the efficiency of these methods and solutions to 

address the problem of efficient navigation in unfamiliar environments 
with obstacles, with a focus on processes such as policy gradient, 
model-free and model-based learning, and the actor-critic approach. 
We comprehensively examine the key concepts, challenges, and 
recent developments in DRL, focusing on its application to 

revolutionize robotic navigation in complex scenarios. 
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1. INTRODUCTION  

Autonomous mobile robots have become increasingly necessary in recent years. These robots are used 

in many aspects of our daily lives, such as cleaning, self-driving cars, military operations, and rescue missions. 

In most applications, the robot must move across difficult and unfamiliar terrain without colliding with 

obstacles. These robots must devise a global path based on available environmental data to avoid stationary 

and moving obstacles. Then, a specific path is created to reach the target points along a pre-defined global path, 

relying on sensors such as LiDAR, RGBD or RGB cameras. Path planning algorithms are classified into 

traditional and heuristic algorithms [1], as shown in Figure 1. Conventional methods were used to address the 

path-planning problem. Some of these algorithms are unsuitable for complex and unfamiliar environments 

because they require complete knowledge of the environment and a detailed map for path planning  [2], [3]. 

Path planning is crucial for robots' ability to navigate independently and without human intervention. 

Robot path planning challenges involve determining the most efficient path from the starting point to the target 

point while avoiding collision [4], [5]. 

RL is the last machine learning (ML) type more suitable for complex tasks, while deep learning (DL) 

can extract information. As a result, many researchers have considered leveraging DL's ability to extract 

information and RL's ability to make decisions to plan the robot's path. 

In DRL, intelligent systems are built, trained by interacting with their environments and evaluated in 

real time. DRL approaches are frequently used in various fields, such as robotics, machine translation, control 

systems, text generation, target identification, autonomous driving, text-based games, and more [6]. 
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DRL techniques have demonstrated an excellent ability to learn and adapt. They have proven their 

efficiency in planning the robot’s path by interacting with its environment, acquiring knowledge, and learning  

 

 
Figure 1. Shows path planning techniques 

Finally, the rest of this work is organized as follows: Section 2 discusses AI-based path-planning 

methods and how they have been applied to solve the path planning problem. Section 3's primary goal is to 

summarize the concepts of DRL. Section 4 presents the most essential DRL path planning and obstacle 

avoidance strategies. Section 5 contains the paper's conclusions. 

 

2. PATH PLANNING TECHNIQUES  

This section discusses the most critical path-planning methods based on AI techniques and how they 

have been employed to solve path planning problems in complex and unfamiliar environments. 

 

2.1. Path planning based on DL    

ANN, support vector machines, and decision trees are examples of ML approaches that employ 

different techniques to create a predictive model using data. The models aim to predict and collect data [9]. 

 Previously, when the processing speed of computers was limited, neural networks (NNs), which had 

several layers of interconnected neurons, were more effective in solving complex issues [10]. Now, DNNs use 

a wide range of connections and many layers of neurons. DL networks have greatly enhanced the accuracy of 

some basic ML tasks, allowing it to work on complex, high-dimensional issues such as distinguishing between 

dogs and cats in high-resolution (megapixel) images. DL allows rapid solution of complex problems involving 

many variables. Furthermore, it has extended ML to everyday tasks, such as speech and facial recognition on 

mobile devices [11]. 

NNs are employed in DL in ML to model and tackle complex problems. They consist of 

interconnected nodes organized into layers, which receive input and undergo processing and transformation. 

These networks are made to simulate the structure and functioning of the human brain. DL's versatility allows 

it to be employed in several ways to tackle the path planning issue. 

Convolutional neural networks(CNNs) are utilized in algorithm processing pictures as input. NNs are 

employed to mimic education and deal with the Q-value problem in RL when dealing with a complicated state 

of action space [12]. 

In [13] the Deep SORT human tracking technique was utilized to monitor individuals' movements. 

The SSD Mobile net object recognition method was trained to expose common stains, litter on the ground, and 

footprints in places with substantial human presence. The dataset contains 1200 pictures for each of the four 

classifications: Stain, Foot Stain, Trash, and Human. 

In [14] the authors presented a new and innovative method for multiple-path planning in real-time. 

This method combines the conventional graph-based search with semantic segmentation. A fully convolutional 

neural network (FCN) was initially developed to examine the ideal trajectory area produced by an A* path 

planning algorithm in several real-life and simulated settings. Incorporating auditory information into the 

localization data significantly improves the neural network's generalization capacity, even in incorrect  

localization findings. Subsequently, the FCN infers several possible path locations, which are subsequently 

employed as constraints for the subsequent A*-based path planning. 

In [15] a novel graph convolutional network model, TAM-GCN, was developed to address a 

significant limitation of the current graph convolutional network: its inability to effectively represent the 

dynamic interaction among various nodes in autonomous driving. TAM-GCN addresses this problem by 

incorporating a trainable adjacency matrix. An approach for surpassing a deep neural network uses the TAM  



                ISSN: 2791-2868 

IJICI, Vol. 2, 1, December 2024, pp. 10~21 

12 

GCN to build a correlation between observed data and intended actions. The network is trained and optimized 

using the imitation learning technique. 

In [16] this work utilizes motion profiles (MP) and compact road profiles (RP) to recognize dynamic 

objects and path areas effectively. These profiles greatly enhance recognition by reducing video data to a 

smaller dimension and increasing the sensing average. To ensure the avoidance of collisions at short distances 

and to assist in the navigation of vehicles at medium and long distances, many reference points and 

measurement points are consistently scanned at different depths to aid in planning vehicle paths. The authors 

utilized a deep network to train and execute semantic segmentation of R.P. in the spatial-temporal domain. In 

addition, the authors proposed an inference model called temporal shifting memory (TSM) for online testing. 

This model is designed to avert data overlap in sequent semantic segmentation, an essential process for edge 

device applications. 

 In [17] a persistent challenge in autonomous driving is the accurate categorization of LiDAR data in 

an outside setting, known as semantic segmentation. The authors presented a pioneering approach called hybrid 

CNN-LSTM for semantic segmentation of LiDAR point clouds. The system has a unique neural network 

architecture and an effective method for handling point cloud characteristics. Building upon Polar Net’s 

approach of representing point clouds as vectors with uniform magnitude, the 3D point clouds were 

transformed into pseudo-images. The scientists developed an innovative neural network structure that 

combines the features of several channels produced by convolutional NNs with extended short-term memory 

networks to improve the representation of small object qualities. The procedure entailed feeding the pseudo 

image into an LSTM network that relied on the spatial filling curve. Experiments performed on the Semantic 

KITTI dataset demonstrate that the approach outperforms current cutting-edge techniques in terms of accuracy 

for semantic segmentation. Provide a theoretical study explaining how a network with sparse point cloud 

features may effectively distinguish small details. 

 

2.2. Path planning based on RL 

ML includes three basic models that specify how observations are represented: supervised, 

unsupervised, and RL [18]. Supervised learning is the primary approach in ML. Supervised learning involves 

a learning algorithm that provides data in the form of example pairs (x, y), which are used to train the function 

f(x). Here, y represents the observed output value that needs to be learned for a given input value x. The phrase 

supervised learning derives from the concept that y-values supervise and guide the learning process on the 

correct responses to each input value. The use of alternative learning methods becomes necessary when 

information is unlabeled. Unsupervised learning is synonymous with feature learning. Unsupervised learning 

uses an inherent metric, such as distance, to evaluate the properties of data items. Unsupervised learning often 

involves identifying patterns in the data, such as clusters or subgroups [19]. 

RL is the latest style in ML and is distinguished from previous models by three main factors: the ability to learn 

through interaction and be used to solve sequential choice problems. RL acquires knowledge through iterative 

interaction, unlike supervised and unsupervised learning techniques, which know more holistically [20].  

RL aims to determine policy and the best action in any environmental situation. The agent acquires 

information through interactions with surroundings and collects data by selecting actions based on the rewards 

they receive in their surroundings [21],  as shown in Figure 2. Agents can select specific activities to obtain 

information; RL is a distinct type of active learning. Agents are like children who develop a particular ability 

through play and exploration. The level of subject autonomy is a critical aspect that attracts researchers [22]. 

A RL agent develops a set of actions to be performed in different environmental scenarios based on past 

experiences. This is done by selecting the procedure or hypothesis to be tested and refining its understanding 

of effective strategies. RL only requires an environment that produces feedback signals of the agent's activities, 

while supervised learning relies on pre-existing datasets with labeled instances to approximate a function [23].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Shows the reinforcement learning architecture  
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RL can be used in a wider variety of situations than supervised learning due to its lower level of 

complexity. The basic ideas in RL are known as Markov decision process (MDP): 

 

1. Agent: the learner and decision-maker [24]. 

2. Environment: the environment encompasses all entities with which the agent or agents interact.  

3. State: An agent's epistemic state is data about its immediate surroundings at a specific moment. This 

data may consist of the agent's present location, the following objects, the space between the robot 

and its intended location point, and any past actions executed by the robot [25]. 

4. Action:  if the agent is in a specific state, it selects an action based on its current behavioral rules 

(policy). The actions show discreteness in particular situations and continuity in others. Possible 

actions in a discrete action space contain movements like left, right, up, down, and more. The mobile 

robot can move from zero to 360 degrees in a continuous action space. 

5. Policy: when the agent is in a state, it chooses an action to perform, guided by its existing behavior 

rules (policy). Policy dictates the behavior of the learning agent at a specific moment. A policy is a 

function that links perceived environmental situations to corresponding actions to be executed in those 

states [26]. It aligns with what would be referred to in psychology as a gathering of stimulus-response 

rules or relationships. At times, the policy could be a primary function or lookup table, while in other 

instances, it may require complex processing like a search technique. The policy is the crucial 
ingredient of a RL agent as it is solely responsible for defining behavior. Policies can be probabilistic 

[27]. 

6. Reward: a numerical rating that reflects the algorithm’s efficacy concerning its environment. A reward 

signal establishes the objective in a RL scenario. In each step, the surrounding provides the RL agent 

with a singular numerical value known as a reward [28]. The reward signal determines which events 

are favorable or unfavorable for the agent. The reward given to the agent is contingent upon the 

activity taken by the agent and the present state of the agent's environment. The agent can only impact 

the reward signal by doing activities that directly affect the reward or indirectly by altering the 

condition of the environment [29]. 

The state-action-reward-state-action (SARSA) and Q-learning are popular and simple methods in RL 

[30]. SARSA is an on-policy temporal difference (TD) approach for policy control. SARSA evaluates the Q-

value functions using TD. Updates to get the appropriate policy. Q-learning is a model-free approach, 

indicating that it doesn't rely on a model of the environment to guide the RL process. The agent acquires 

knowledge through practical encounters and formulates its prognostications on the environment. Q-learning is 

an off-policy technique that sets the optimal action based on the current state. Watkins proposed the Q-Learning 

method as a suitable approach for handling the trouble of path planning of mobile robots[31]. 

In [32]the IQL was explicitly built to enhance the obstacle avoidance performance of QL in dynamic 

scenarios by including the concept of distortion and an optimization mode. An analysis was conducted to 

compare the computational time, collision rate, traveled distance, and success rate of IQL with QL and DWA 

in 14 navigation scenarios with various layouts and dynamic obstacles. 

In [33] the QAPF learning method, which integrates Q-learning with the artificial potential field, is 

proposed as a resolution for mobile robot path planning challenges. The QAPF learning algorithm consists of 

three operations: exploration, exploitation, and APF weighting. These are employed to overcome the 

limitations of the conventional Q-learning approach for path planning in both familiar and unfamiliar contexts. 

In [34] the research introduced dynamic weighting coefficients based on Q-learning for DWA 

(DQDWA) using a Q-table that includes robot statuses, ambient circumstances, and weight coefficient actions. 

DQDWA may utilize the Q-table to dynamically choose the best pathways and weight coefficients that adjust 

well to changing environmental conditions. The efficacy of DQDWA was validated by empirical testing and 

thorough simulations. 

In [35] the authors employed the accomplishment motivation model to modify the Q- Learning 

algorithm to generate different path variations. The Motivated Q-Learning (MQL) method was implemented 

in an environment consisting of three scenarios: one with no obstacles, one with uniformly distributed 

obstacles, and one with randomly placed obstacles. 

In [36] the improved Q-learning for the mobile robot approach utilizes the following strategies to 

boost performance: The final path is more efficient and seamless due to the implementation of 8 optical self-

adaptive action spaces, path extensions, and dynamic exploration factors. 
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2.3. Path planning based on DRL 

RL and DL disciplines have recently converged, resulting in experimentation and learning from 

several engagements with the challenge. DRL has introduced novel methodologies and achievements through 

model-based, policy-based, transfer, hierarchical reinforcement, and multi-agent learning progress [37]. 

DRL intends to acquire the most advantageous behaviors that provide the highest rewards across 

various environmental conditions. This is achieved through engaging with intricate, multi-dimensional 

environments, conducting experiments with diverse actions, and assimilating knowledge from received 

feedback. One of the primary factors driving interest in this form of learning is its compatibility with 

contemporary computer systems, allowing for its effective implementation across various applications such as 

gaming, Atari, and robotics [38]. 

DRL offers solutions for trajectory planning in uncertain circumstances owing to technique 

developments. Unlike traditional trajectory planning methods that need significant effort to address 

complicated, high-dimensional problems, the recently proposed DRL enables a mobile robot to actively engage 

with its surroundings and independently acquire knowledge to choose the optimal course [39]. Mobile robots 

using DL techniques have demonstrated remarkable abilities to accurately complete tasks, maneuver complex 

environments, and avoid obstacles. Among the prominent DL techniques are deep learning network (DQN), 

double DQN, actor-critic (A2C, A3C), deep deterministic policy gradient (DDPG), double delay DDPG (TD3), 

soft actor-critic (SAC), and others. The strategies use a reward framework to mimic human learning behavior, 

and the system motivates the agent to engage in positive actions and imposes punishments for negative actions 

[40]. 

 We will discuss key DRL concepts and comparisons, including model-free and model-based learning, 

off-policy and on-policy approaches, policy gradient theory, and active critic techniques. Next, we will analyze 

recent research that has used DRL techniques and how to combine them with other methods to solve path 

planning and dynamic obstacle avoidance problems. 

 

3. BASIC CONCEPTS IN DRL 

In this section, it is explained the basic concepts of DRL and the techniques based on these concepts. 

3.1. Model-free learning vs model-based learning 

RL is classifiable as model-based learning or model-free learning. Model-free learning is a core 

technique for RL where agents (Robots) evaluate actions and acquire knowledge of their consequences using 

techniques based on experience [41]. These algorithms repeatedly perform actions and adjust their policy (the 

strategy guiding their actions) to maximize rewards based on the observed outcomes. Model-free RL may be 

further categorized into techniques based on value, policy, and actor-critic. Value-based DRL techniques utilize 

TD learning and DNNs to estimate the function’s value[36]. The environment model comprises the likelihood 

of state transitions and the expected reward. However, in actual scenarios, they may not be accessible for all 

potential states. Model-free RL techniques utilize the agent's experience to directly learn the most optimum 

value functions or policies without relying on a comprehensive model of the environment. This is achieved by 

approximating the ideal policy through a trial-and-error procedure. The quantity of agent samples of data 

regarding environment interaction needed for training model-based algorithms is lower than that required for 

model-free techniques. However, model-based algorithms still require model-free approaches to create the 

environment model [42]. 

Model-free RL approaches are beneficial for intricate issues that make constructing a sufficiently 

precise environment model difficult. Model-based learning depends on developing internal representations of 

the environment to optimize reward. Preferences are prioritized above action outcomes; the agent with a greedy 

approach will consistently attempt to do actions that provide the highest possible reward, regardless of potential 

consequences. For a model-based system to learn all of the transition probabilities, it must utilize dynamic 

programming methodologies to determine the chance of an agent changing states [43]. 

The system's model-based component uses a cross-entropy optimizer to change the model. This 

change aims to decrease the collision probability in the following step. It accomplishes this by forecasting the 

future condition based on the current condition and the activity performed. Each method, whether model-based 

or model-free, has its advantages and limitations. Model-free methods may exhibit reduced efficacy and require 

a larger dataset to attain satisfactory performance, although they are frequently easier to execute and facilitate 

expedited experiential learning. Model-based strategies exhibit reduced sensitivity to environmental changes 

and enhanced efficacy with less data but pose more application challenges [44]. AlphaZero method is a model-

based approach, and Q-learning is model-free. 

 

3.2. On-policy vs. off-policy 
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The process by which the behavior policy acquires knowledge is essential to developing techniques 

for RL. It focuses on creating a policy by analyzing actions and rewards. It chooses an activity to perform. On-

policy learning involves updating the value of a desired action by consistently utilizing the original behavior 

of the function’s policy that was used to select the action [45]. Off-policy refers to the situation in which 

learning occurs by storing the values of an action other than the one chosen by the behavior policy [46]. The 

SAC technique is a policy, and the A3C method is a policy. 

 

3.3. Policy gradient theory  

The value function is optimized using policy gradient (PG) over a parameterized family of policies. 

This Technique offers a minimum of two advantages. Initially, actions are selected from a well-defined 

parametric distribution [47]. Secondly, having less knowledge about the parameters of the parametric family, 

which has to be learned, arises from approximation policies. This leads to more efficient learning if one has 

prior information or intuition about the potential optimal policies, such as Gaussian distributions [48]. DDPG 

is based on PG theory. 

 

3.4. Temporal-difference learning 

TD learning combines dynamic programming principles (DP) with Monte Carlo. Like Monte Carlo 

techniques, TD procedures do not necessitate a model of the environment's dynamics to acquire knowledge 

from direct experience. Like DP, TD techniques iteratively refine their estimates by incorporating previously 

learned estimates without waiting for an outcome [49]. The relationship between TD, DP, and Monte Carlo 

approaches is a recurring subject in the context of RL. TD employs two distinct policy control techniques:  

SARSA, which is an on-policy method, and Q-learning, which is an off-policy method [50]. 

 

3.5. Actor-critic methods 

utilize TD techniques to separate the policy from the value function through a unique memory 

structure [51]. The policy framework is commonly known as the actor because it dictates to the actor to be 

taken. The estimated value function is called the critic, as it simultaneously assesses the decisions the actor 

created.  

 Learning is fundamentally linked to policy: the critic must gain expertise and evaluate the policies 

the actor implements. The critique is presented as a type of TD error. According to Figure 3, this scalar signal 

is the critic's only output and propels all learning in the actor and critic [52]. 

 

 
              Figure 3. Shows the structure of actor-critic technique  

The notion of reinforcement comparison approaches is naturally expanded to TD. Learning and RL 

by utilizing actor-critic methods. The critic often functions as a state-value function. After each decision, the 

critic evaluates the current condition to see if the outcome exceeded or fell short of expectations [53]. 

Actor-critic techniques optimize the policy and value functions using the benefits of both actors only 

(policy-function) and critic-only (value-function) techniques. In actor-critic approaches, the policy makes 

decisions depending on the present situation, while the critic analyses the actor's performance to approximate 

the function’s value. 

Subsequently, the parameterized policy is modified to enhance performance by including the value 

function and employing gradient ascent [54]. 

 

4. DRL TECHNIQUES 

In this section, it is discussed the latest DRL techniques, highlights their challenges, and discusses 

ways to integrate them with other algorithms to solve path-planning problems in dynamic and static 

environments. 
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4.1.  Deep Q-Learning (DQN) 

DQN is an approach that mixes DNNs with Q-learning to determine the best action to take in a 

particular situation. The objective is to enable agents to learn about the optimal course of action in complex 

and multi-dimensional environments. It can handle environments with large state spaces by employing a neural 

network to approximate the Q function. The Q-function estimates the expected total reward for each possible 

action in a specific state. The network is updated repeatedly by mixing exploitation and exploration strategies 

throughout the episodes [55].  

The DQN approach is extensively employed in path-planning applications due to its self-learning 

capability and adaptability to complex situations. 

In [56] the Improved Dueling Deep Double Q Network algorithm (ID3QN) addresses the issues of 

overestimation and insufficient sample use in the classic DQN technique. It achieves this by utilizing an 

asymmetric neural network structure, optimizing the neural network structure, employing a double network to 

estimate action values, enhancing the action selection mechanism, implementing a priority experience replay 

mechanism, and redesigning the reward function. 

In [57] the authors utilize the DQN and Artificial Potential Field (APF) algorithms to forecast the 

optimal Path for a mobility robot. The DQN is constructed and trained to achieve this aim. Subsequently, the 

APF shortest path method is incorporated into the DQN algorithm. 

In [58] the AG-DQN method is designed to solve the Pathfinding problem of an AGV in an RMFS. 

It offers a quicker training procedure and reduces decision-making time compared to the A* technique. The 

AG-DQN technique utilizes a trained neural network that solely relies on the layout data of the current system 

to guide the AGV in completing a set of tasks assigned at random. 

In [59] the agents are implemented by combining the deep Q networks approach, namely the D3QN 

and rainbow algorithms. These algorithms are used for obstacle avoidance and goal-oriented navigation tasks. 

The Rainbow DQN, because of its enhanced updates and improved estimates, achieved more goals and 
experienced fewer collisions during training than the D3QN agents. 

In [60] the authors enhanced the DQN approach for Path planning for autonomous mobile robots. The 

reward function is enhanced by incorporating heading angle and distance errors. Additionally, a DHD 

(distance-heading angle-direction) reward function is devised by integrating the movement direction. This 

modification aims to enhance the algorithm’s execution and prevent it from getting stuck in local optima. A 

weight-sampling learning approach is developed to grow the usage rate of training samples and accelerate the 

convergence speed of the algorithm. 

 

4.2. Deep deterministic policy gradient (DDPG) 

This methodology is a model-free off-policy approach developed explicitly to acquire knowledge 

about continuous activities. It integrates principles from Deterministic PG and DQN [61]. The system 

incorporates Experience Replay and slow-learning target networks from DQN. It is based on DPG and can 

operate in continuous action spaces [62]. 

In [63] Robotics involves the crucial challenge of maneuvering robots over expansive settings while 

evading moving impediments. A refined DDPG path planning approach incorporates sequential linear path 

planning (SLP) to address this issue. The authors aim to progress the reliability and effectiveness of standard 

DDPG approaches by including SLP to achieve a better balance between reliability and immediate 

performance. The system utilizes the Simultaneous Localization and Mapping (SLAM) algorithm to create a 

sequence of smaller objectives determined by a rapid computation of the robot's intended trajectory. 

Subsequently, The DDPG technique is utilized to provide these intermediate objectives for path planning while 

guaranteeing the avoidance of obstacles. 

In [64] the authors employed a DRL-based technique known as Structure of Reconfigurable of DDPG 

(RS-DDPG) for robots. This method incorporates an event-triggered reconfigurable actor-critic network 

framework for motion policy, which dynamically adjusts its structure to mitigate the issue of the value of action 

overestimation. Subsequently, the temporal convergence of the policy motion may be improved by utilizing 

the action value that exhibits minimal divergence in valuation. A dynamic incentive system is developed for 

Flexible networks to address the absence of sample data. 

 In [65] the authors employed the DDPG technique for path planning mobile robots. A deep neural 

network structure may be constructed to improve the capabilities of robots’ decision-making by using the DL 

Tensor Flow. Employs multi-sensing data collection by integrating image and LIDAR information to improve 

perceptive abilities. A meticulously crafted network model, a lightweight multimodal data-fusion network, has 

been established, which includes the idea of modalities separating learning. By integrating sensory data, robots 

enhance their understanding of their environment and improve their ability to make accurate decisions. 

Utilizing the artificial potential field technique for generating the reward function can lead to quicker 

convergence of the neural network and higher success rates in guiding mobile robots. 
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In [66] the authors employed the DDPG technique to accomplish the task of Path planning in a 

challenging continuous environment. Create a stochastic obstacle model for mobile sensors to replicate the 

complexity of target tracking situations and reduce mistakes by adjusting the parameters of the target network. 

Enhance the reward function to expedite the movement of the mobile sensor toward the goal location. 

In [67] the DDPG technique is used with an LSTM network-based encoder to understand an 

indeterminate number of obstacles. Based on the LSTM network, the encoder utilizes the most recent 

environment data, which includes the prominent obstacles. It applies the secure processing guideline to produce 

a state vector with a defined length. 

 

4.3. Twin delayed DDPG (TD3) 

DDPG exhibits some instances of achieving exceptional performance, but it frequently demonstrates 

instability about hyperparameters and other tweaking forms. An example of a common failure situation in 

DDPG is when the learned Q-function overestimates Q-values excessively. This results in policy violation 

since it exploits the faults of the Q-function. The TD3 approach incorporates three crucial strategies to address 

this trouble:  clipped double Q-learning, delayed policy updates, and target policy smoothing. TD3 is an 

effective method for DRL navigation [68]. 

In [69] to get the ultimate Q-value, the author enhanced the precision of the Q-value estimate and 

enhanced the capacity to learn; the authors propose a revised version of the TD3 method incorporating the 

dueling critic network architecture. This design separates and recombines the state value and action trait 

functions. Additionally, the authors include the dueling network architecture into the critic network to enhance 

the precision of the Q-value estimation. The findings indicate that the suggested model surpasses the old model 

because of its ability to design paths. 

In [70] to address the low success rate and slow learning speed of the TD3 approach in the planning 

of mobile robot paths, researchers are examining an enhanced TD3 algorithm. To mitigate the effects of 

inaccuracies in value estimation, the Technique of prioritized experience replay is implemented, along with the 

development of dynamic delay updating algorithms. These methods reduce training time while enhancing the 

benefits and increasing the success rate. Currently, simulated trials are being employed to validate the 

algorithm's effectiveness for planning mobile robot paths. 

In [71] the path planning method of mobile robots utilizes the Prioritized Experience Replay (PER) 

technique and Long Short Term Memory (LSTM) neural network. This approach effectively addresses 

problems related to slow convergence and incorrect perception of dynamic obstacles by employing the TD3 

technique. This unique approach has been designated as PL-TD3. The authors use the Policy Evaluation with 

Repeated Updates (PER) approach to enhance the method’s convergence rate. Subsequently, the LSTM neural 

network was utilized to improve the dynamic obstacle detection technique. Based on the testing results, PL- 

TD3 outperforms TD3 in terms of both execution time and execution path length across all situations. 

In [72] the authors suggested a method for designing lifting paths by employing DRL for hybrid action 

spaces. The network architecture was devised using the TD3 technique. To tackle the issue of limited rewards 

in long-distance path planning, a proposed solution involves creating a unique reward function and 

implementing hindsight experience replay. Real-time path planning is feasible in unfamiliar surroundings due 

to the ability to create an easy-to-follow path. 

In [73] the authors proposed that the Advanced TD3 model can devise drone trajectories energy-

efficiently at the edge level. The TD3 is the most sophisticated approach in PG RL, now considered state-of-

the-art in this field. The TD3 model incorporates the drone's continuous action space while employing the 

frame stacking method. The authors expanded the range of observation for agents to achieve both fast and 

stable convergence. They also modified the TD3 model using Offline RL to decrease the training overhead for 

the RL model. 

 

4.4. Asynchronous advantage actor-critic (A3C) 

In 2016, DeepMind introduced A3Cs. PG and DQN became outdated due to their simplicity, 

resilience, efficiency, and capacity to provide superior outcomes in typical RL assignments. A3C consists of 

several autonomous agents, often networks, each possessing a distinct weight. These agents interact 

simultaneously with independent replicas of the environment. Consequently, they can allocate significantly 

less time to explore a more extensive range of state-action possibilities. A3C is an on-policy method, so 

utilizing an experience replay buffer is unnecessary. It exhibits greater resilience to hyperparameter adjustment 

than DDPG [74]. 

In [75] the authors suggested a three-step technique, detailed in the following order: A path planner 

that uses footprints to calculate cover and metrics for the path length for different Smorphi shapes. Second, the 

optimization of PPO and A3C methods. This creates energy-efficient and optimal configurations for Smorphi 

robots by maximizing rewards. Third, a Markov decision process (MDP) to represent and analyze the Smorphi 
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design space enables sequential decision-making. The proposed approach employs a validated technique using 

two separate environment maps. It subsequently evaluates the results by comparing them to the Pareto front 

solutions obtained by NSGA-II and the suboptimal random shapes. 

In [76] the authors presented a technique for training neural controllers for differential-drive mobile 

robots operating in a congested environment to reach a given destination safely. The researchers devised a 

training pipeline that allows for the expansion of the process to many compute nodes. The authors showcased 

the ability to train and evaluate neural controllers efficiently on an actual robot in a dynamic setting by 

employing the asynchronous training methodology in A3C. 

In [77] the authors suggested using a mean-A3C (M-A3C) method to find the robot's final motion in 

continuous state and action spaces without needing a reference gait. The authors utilized the M-A3C algorithm 

in a physical simulation environment to train several virtual robots independently and simultaneously with the 

help of various sub-agents. The trained model was used to regulate the robot's walking to decrease the need for 

frequent training sessions on the physical robot, accelerate the training process, and guarantee the proper 

implementation of the desired walking pattern. Ultimately, a bipedal robot is created to confirm the practicality 

of the suggested approach. Multiple studies indicate the proposed technique may reliably offer the biped robot 

uniform and seamless gait planning. 

 In [78] the Dec-POMDP model-based IL-A3C algorithm is designed to conquer the constraints of 

conventional centralized path planning techniques. Afterward, the IL-A3C performance evaluation is carried 

out by measuring metrics such as the mean path planning length, mean path planning time, mean likelihood of 

a collision, and mean planning success rate across several dimensions. The simulation outcome demonstrates 

that ILA3C has excellent performance in environments characterized by a sparse distribution of barriers, and 

it can be easily expanded to accommodate a team consisting of 128 robots. Comparatively, the centralized 

algorithms A3C and CBS are contrasted with IL-A3C, revealing that IL-A3C exhibits superior stability, 

scalability, and success rate compared to A3C and CBS. Growing IL-A3C into a large-scale robot team is a 
straightforward task. 

In [79] to accelerate the learning process, the authors have suggested implementing a sophisticated 

double-layered multi-agent system that utilizes a two-dimensional grid to represent a state space. This system 

provides a hierarchical representation of a two-dimensional grid space and leverages actions based on the A3C 

technique. Both the top and lower levels included the state space. The top layer promptly evaluates the learning 

outcomes obtained from the bottom layer's use of A3C, leading to a decrease in the overall duration of learning. 

The efficacy of this approach was confirmed by experimentation with a virtual simulator for autonomous 

surface vehicles, and the time needed to attain a 90% success rate in meeting the aim decreased by 7.1% 

compared to the standard double-layered A3C approach. Through almost 20,000 learning sessions, the 

suggested approach surpassed the conventional double-layered A3C by obtaining a target achievement of 

18.86% higher. 

 

4.5. Soft actor-critic (SAC) 

Using stochastic policy, the SAC methodology integrates DL techniques and merges the maximum 

entropy concept into an actor-critic network. The SAC technique excels in DRL techniques because of its 

exceptional exploration abilities and quick reaction to complex situations [80]. The SAC method stands out 

from other algorithms due to its superior sampling efficiency and robustness in dealing with slow convergence. 

The method learns from off-policy, which is the underlying cause. The primary characteristic of the change of 

the goal function in the context of SAC is that the objective is to optimize rewards and policy entropy. High 

entropy in policy facilitates exploration, mitigating the vulnerability to convergence. Consequently, this 

technique has demonstrated its effectiveness in path planning. 

In [81] the authors employed a multi-agent actor-critic approach called SAC with Heuristic-Based 

Attention (SACHA). This method incorporates heuristic-based attention mechanisms for actors and critics, 

promoting agent collaboration. SACHA trains a neural network for each agent to focus on the shortened Path 

heuristic that guides several agents within its vicinity. SACHA enhances the current multi-agent actor-critic 

paradigm by incorporating a dedicated critic for all agents to estimate Q-values. 

In [82] the authors developed a novel method called SAC-M, which combines the adaptive SAC with 

automated entropy techniques. These approaches enable the computerized adjustment of temperature settings, 

allowing the entropy to fluctuate between various states to regulate the extent of exploration. 

 In [83] to provide real-time optimum feedback management in the navigation task, we utilize a unique 

mixed auxiliary reward structure and sum-tree prioritized experience replay (SAC-SP). This approach treats 

the navigation job as a   Markov   Decision   Process, encompassing static and movable obstacles. To enhance 

the efficiency of robust learning for AGVs, propose a unique approach incorporating mixed auxiliary 

incentives. Next, the AGVs can be effectively utilized by implementing the SAC-SP technique for time 

navigation using a mix of effective auxiliary reward structures. The proficient policy network can generate 
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real-time optimum feedback actions based on the placements of obstacles, the objective, and the states of the 

AGV. 

In [84] the authors proposed a SAC Residual-like (R-SAC) method for agricultural settings, aiming 

to provide security for the avoidance of obstacles and Path-planning intelligence for robots. To address the 

time-consuming issue in the exploration phase of RL, the authors propose an offline expert experience pre-

training Technique. This technique increases the effectiveness of training in RL. Additionally, the method 

enhances the reward system by including multi-step TD-error, effectively resolving training-related issues. 

 

5. CONCLUSION 

Mobile robots face significant challenges in achieving autonomous navigation, especially in uncertain 

environments. To scan its surroundings, determine its location, and plot a course toward a goal, the position of 

the intended destination is crucial in a navigation system because it is an input to the path-planning technique. 

The robot often requires multiple sensors. However, DRL methods solve navigation challenges without a pre-

defined map by identifying the most efficient course of action. This article explores several methodologies to 

address the challenge of path planning in mobile robots by taking advantage of DNNs and RL. This group can 

provide a reliable answer. This review provides a comprehensive analysis of several methods and their specific 

applications. Although DL methods have exceptional capabilities, they also present distinct challenges. It has 

an enhanced ability to detect and understand subtle differences in data, which requires a large amount of 

computer processing and data. However, ongoing research has identified several strategies that may mitigate 

these challenges. Domain randomization techniques improve the quality of training data, while intrinsic 

incentives and reward shaping lead to higher reward concentration and overall performance.  

LSTM-based RNNs have been used to study the time-dependent features of navigational data, 

increasing the effectiveness of DRL approaches. Due to their advantages, it is critical to carefully evaluate the 
use of these tactics when implementing DRL techniques in path-planning activities. With advances in DRL-

based route planning, navigation efficiency through unfamiliar locations has been greatly improved. In 

navigation, DRL is essential for creating autonomous mobile robots that are intelligent and adaptable in real-

world scenarios as we advance into the Fourth Industrial Revolution, which began with AI and robotics. 
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